⚖️ Conformal vs. Bayesian Prediction for Tech Startups

Kabir's Tech Dives

In this episode, we dive into two powerful machine learning techniques for uncertainty quantification: Conformal Prediction (CP) and Bayesian Prediction (BP). CP ensures reliable confidence intervals for predictions, making it highly interpretable and model-agnostic. On the other hand, BP leverages Bayes’ Theorem to continuously refine predictions with new data, prioritizing adaptability and probabilistic reasoning.

We break down the strengths and weaknesses of each approach, explore real-world applications in fintech and healthcare, and discuss when startups might benefit from combining both methods. Whether you're optimizing AI for reliability, dynamic learning, or interpretability, this episode will help you make an informed choice.

Send us a text

Support the show


Podcast:
https://kabir.buzzsprout.com


YouTube:
https://www.youtube.com/@kabirtechdives

Please subscribe and share.

Pour écouter des épisodes au contenu explicite, connectez‑vous.

Recevez les dernières actualités sur cette émission

Connectez‑vous ou inscrivez‑vous pour suivre des émissions, enregistrer des épisodes et recevoir les dernières actualités.

Choisissez un pays ou une région

Afrique, Moyen‑Orient et Inde

Asie‑Pacifique

Europe

Amérique latine et Caraïbes

États‑Unis et Canada