Деньги любят техно

VTB Bank
Деньги любят техно

Пока весь мир ждет революции в развитии искусственного интеллекта, мы говорим с теми, кто его создает. Новые сезоны подкаста «Деньги любят техно» посвящены науке о данных, машинному обучению, дата-инженерии и всему, что с этим связано. Говорим с экспертами из науки, исследователями и практиками из компаний различных отраслей – про развитие ML, данные, дата-аналитику и влияние технологий, которые принято называть «искусственным интеллектом», на бизнес.

  1. 2024. 12. 20.

    ML в ритейле: как посчитать ажиотаж и научить ИИ работать вместе с человеком

    К предновогоднему ажиотажу продуктовые сети начинают готовиться с лета. Чтобы товаров на полке хватало, а праздничные акции радовали покупателей, необходима слаженная работа множества специалистов. Как в этом задействованы дата-инженеры, где невозможно обойтись без ИИ, и как машинное обучение помогает торговым сетям справиться с ежедневной рутиной? В новом эпизоде подкаста «Деньги любят техно», посвященного Data Science в различных отраслях, говорим об этом с представителями X5 Group. А еще подводим итоги года. Гостями эпизода стали директор по управлению данными X5 Tech Тигран Саркисов и директор по развитию искусственного интеллекта Х5 Tech Михаил Неверов. Ведущий эпизода — начальник управления моделирования партнерств и ИТ-процессов ВТБ Юлий Шамаев. Смотрите и слушайте подкаст на платформах VK Видео, Rutube и на популярных аудио-площадках.

    1시간 3분
  2. Лица Data Fusion: Алексей Каширин о математике, роли руководителя и ИИ как новом социальном игроке

    2024. 12. 18.

    Лица Data Fusion: Алексей Каширин о математике, роли руководителя и ИИ как новом социальном игроке

    В новом эпизоде серии «Лица Data Fusion» с Алексеем Кашириным, директором Центра продвинутой аналитики Альфа-Банка, говорим про выбор между научной карьерой и бизнесом, смелость ученых, врожденные и нарабатываемые качества руководителя, работу с сотрудниками и воспитание детей. Ведущий сезона Денис Суржко, заместитель руководителя департамента анализа данных и моделирования ВТБ, пригласил Алексея на теплую беседу за чаем, чтобы проводить 2024 год за обсуждением интересных тем. Среди них: карьера и достигаторство, «природные» таланты и упорный труд, влияние ИИ на общество, качества и знания, которые необходимы всем людям, стремящимся к чему-то значимому. Запасайтесь согревающим напитком и включайте эпизод — «Деньги любят техно» можно смотреть в VK Видео и Rutube или слушать в аудио-версии на популярных подкаст-платформах.

    50분
  3. 2024. 12. 05.

    Data Science с человеческим лицом: ML в проектах от телекома до медицины

    Как пройти путь от выстраивания собственной Data Science-экспертизы в телеком-индустрии до поставки ИИ-решений далеко за ее пределы? Как растут и расширяются компетенции датасайентистов, и почему проекты, связанные с ИИ, важны для государства, бизнеса и общества? С директором по искусственному интеллекту и цифровым продуктам билайна, генеральным директором «МедТех ИИ» Константином Романовым обсудили широкие возможности применения и демократизацию ML. Ведущие выпуска: Юлий Шамаев, начальник управления моделирования партнерств и ИТ-процессов ВТБ, и Марина Эфендиева, технологический обозреватель. Подкаст доступен в видео-версии на платформах VK Видео и Rutube, а также на популярных подкаст-площадках. Подпишитесь, чтобы поддержать нас и не пропустить новые эпизоды сезона Data Science.

    52분
  4. Лица Data Fusion. Иван Оселедец о пути в науку, современной аспирантуре и Data Science

    2024. 11. 26.

    Лица Data Fusion. Иван Оселедец о пути в науку, современной аспирантуре и Data Science

    За научным или практическим успехом всегда стоят конкретная личность и команда. На конференциях обсуждаются результаты работы, но мы мало знаем о людях, которые ее делают. Эта идея легла в концепцию нашего специального сезона «Лица Data Fusion», который мы запускаем в преддверии конференции по анализу данных и технологиям ИИ Data Fusion. Герой первого эпизода этой серии — доктор физико-математических наук, профессор РАН, генеральный директор института AIRI, профессор «Сколтеха» Иван Оселедец. О современных ученых, работе с людьми и будущем, связанным с развитием ИИ, с Иваном поговорил ведущий специального сезона — заместитель руководителя департамента анализа данных и моделирования ВТБ Денис Суржко. Наши герои беседуют за чаем – рекомендуем и вам запастись теплым напитком и включить эпизод: «Деньги любят техно» можно смотреть в VK Видео или слушать в аудио-версии.

    53분
  5. 2024. 09. 30.

    Где можно и где нельзя без ML в промышленности

    Работа Data Science-специалистов в промышленных компаниях строится по своим правилам и требует специфических навыков: нужно не только любить математику, но и дружить с физикой, и разбираться в технологии. Кроме того, работа DS-команд вплотную связана с людьми и процессами на производстве. Есть и особенности в работе с данными: всевозможные промышленные агрегаты оставляют огромный цифровой след в системах, и тем самым создают почву для внедрения ИИ-продуктов. При этом «все, что можно сделать без искусственного интеллекта, надо делать без искусственного интеллекта», – уверен гость выпуска, директор департамента технологий ИИ «Русала» Михаил Граденко. Ищем сходства и различия в задачах DS-команд в финтехе и промышленности, обсуждаем проблемы и решения, выделяем главные направления развития ML в этих сферах. Ведущие выпуска: Юлий Шамаев, начальник управления моделирования партнерств и ИТ-процессов ВТБ, и Марина Эфендиева, технологический обозреватель. Подкаст доступен в видео-версии на платформе VK Видео и на всех популярных аудио-платформах. Подпишитесь, чтобы поддержать нас и не пропустить новые эпизоды сезона Data Science.

    56분
  6. 2024. 09. 19.

    Как интересные задачи затягивают в Data Science

    Использовать машинное обучение везде, где это возможно и целесообразно — и в пользовательских сервисах, и во внутренних процессах. Такую парадигму развития ML в компании озвучил Андрей Рыбинцев, старший директор по данным и аналитике «Авито». Обсудили, с чего начинается путь в Data Science, какие задачи кажутся самыми интересными и в каких процессах без ML уже не обойтись – а также то, как из гипотезы рождается продукт и какие «созидательные кейсы», позволяющие улучшить клиентский опыт, особенно важны IT-компаниям. Ведущие эпизода: Юлий Шамаев, начальник управления моделирования партнерств и ИТ-процессов ВТБ, и Марина Эфендиева, технологический обозреватель. Этот выпуск — «пилот» пятого сезона, который мы запускаем и в уже привычном формате аудио, и в новом для нашего подкаста формате видео. Слушайте и смотрите нас на удобных вам площадках и поддержите подкаст, если считаете, что он приносит пользу!

    49분
  7. 2023. 12. 20.

    Мешают ли дата-сайентистам галлюцинации: подводим итоги года в ML, AI, DS

    С командой дата-сайентистов из ВТБ подводим итоги 2023 года в темах развития нейросетей, машинного обучения, инструментов на базе ИИ. Конечно же говорим про большие языковые модели и начало гонки генеративного AI среди бигтехов. Делимся своим опытом использования нейросетей в работе и в жизни. Говорим об этике, философски обсуждаем настоящее и немного фантазируем о будущем. И пытаемся узнать, когда ИИ поработит человечество. Участники: • Антон Бабак, тимлид в команде перспективных алгоритмов машинного обучения • Иван Яруков, Senior DS, моделирование в крупном бизнесе и СМБ • Анатолий Глушенко, тимлид DS, моделирование партнерств и ИТ-процессов Ведущая: • Технологический обозреватель Марина Эфендиева Подпишитесь, чтобы послушать другие эпизоды сезона Data Science в подкасте «Деньги любят техно».

    41분
  8. 2023. 12. 04.

    MLOps, часть III: критерии выбора инструментов и возможности Open Source

    Машинное обучение так или иначе уже применяется в компаниях самых разных масштабов и направлений деятельности. Однако для выстраивания зрелой ML-инфраструктуры и перехода к эффективным MLOps-практикам требуется понимание: с чего начать, на какие платформы обратить внимание, к каким инструментам присмотреться внимательнее, а какие подойдут лишь для разовых экспериментов. К инструментам MLOps для больших исследовательских и бизнес-задач предъявляется три базовых требования: интерпретируемость, воспроизводимость, надёжность. Как среди десятков Open-Source-инструментов выбрать правильные, что могут или не могут использовать компании, к которым предъявляются высокие требования стандартизации, на чем должен основываться выбор между облаками и InHouse для ML — в третьем выпуске серии MLOps обсудили Юрий Карев, руководитель управления процессов и стандартов моделирования и машинного обучения ВТБ, и Алексей Незнанов, к.т.н, старший научный сотрудник международной лаборатории интеллектуальных систем и структурного анализа НИУ ВШЭ. Подпишитесь, чтобы не пропустить новые эпизоды сезона Data Science в подкасте «Деньги любят техно». Дополнительные материалы: Ссылки на полезные ресурсы к этому эпизоду ищите в нашем блоге на Хабр: https://habr.com/ru/companies/vtb/news/778270/

    49분

소개

Пока весь мир ждет революции в развитии искусственного интеллекта, мы говорим с теми, кто его создает. Новые сезоны подкаста «Деньги любят техно» посвящены науке о данных, машинному обучению, дата-инженерии и всему, что с этим связано. Говорим с экспертами из науки, исследователями и практиками из компаний различных отраслей – про развитие ML, данные, дата-аналитику и влияние технологий, которые принято называть «искусственным интеллектом», на бизнес.

좋아할 만한 다른 항목

무삭제판 에피소드를 청취하려면 로그인하십시오.

이 프로그램의 최신 정보 받기

프로그램을 팔로우하고, 에피소드를 저장하고, 최신 소식을 받아보려면 로그인하거나 가입하십시오.

국가 또는 지역 선택

아프리카, 중동 및 인도

아시아 태평양

유럽

라틴 아메리카 및 카리브해

미국 및 캐나다