Eric Daza | Important Ideas in Causal Inference

Data & Science with Glen Wright Colopy


Eric Daza | Important Ideas in Causal Inference

YouTube: https://youtu.be/K5nsSMJVIT0

Andrew Gelman and Aki Vehtari wrote a paper titled, "What are the most important statistical ideas of the past 50 years?". The first idea in the list is "counterfactual causal inference". Eric Daza (Evidation Health) walks us through the main ideas of the Gelman & Vehtari paper, drawing examples from several fields, including medical & healthcare statistics. 

Topics
0:00 - Coming up...Correlation vs Causation
1:20 - Most important statistical ideas over the last 50 years
6:10 - Counterfactual Causal Inference
9:40 - Assumptions Change between Applied Domains
21:10 - Propensity Score Methods
25:15 - Transportability of Scientific Results 
26:30 - People don't want generalizable results
32:00 - Generic Computation Algorithms
37:00 - Reweighting
43:57 - Matching Methods
58:20 - Medical Data is Higher Dimensional that we think.
1:00:15 - Is a Trial Population Representative? 
1:10:35 - Causal Models in the Future
1:18:45 - Apostates Welcome
1:21:45 - Scientific Debate

무삭제판 에피소드를 청취하려면 로그인하십시오.

이 프로그램의 최신 정보 받기

프로그램을 팔로우하고, 에피소드를 저장하고, 최신 소식을 받아보려면 로그인하거나 가입하십시오.

국가 또는 지역 선택

아프리카, 중동 및 인도

아시아 태평양

유럽

라틴 아메리카 및 카리브해

미국 및 캐나다