47 episodes

As name indicates, lets get to the basics podcast is new way of learning about everything that you wished that would have been known

The Basics Explorer

    • Science

As name indicates, lets get to the basics podcast is new way of learning about everything that you wished that would have been known

    E47 # Is There Life on Mars?

    E47 # Is There Life on Mars?

    “Is there life on Mars?” is a question people have asked for more than a century. But in order to finally get the answer, we have to know what to look for and where to go on the planet to look for evidence of past life. With the Perseverance rover set to land on Mars on February 18, 2021, we are finally in a position to know where to go, what to look for, and knowing whether there is, or ever was, life on the Red Planet.

    Credit: 

    John Grant

    Center for Earth and Planetary Studies

    Si.edu

    https://airandspace.si.edu/stories/editorial/percy-life-on-mars

    • 5 min
    E46 # Driving Mars Exploration: How the Perseverance Rover Will Pave a Path into the Future

    E46 # Driving Mars Exploration: How the Perseverance Rover Will Pave a Path into the Future

    If all goes according to plan, the landing of the Mars 2020 Perseverance rover (“Percy”) tomorrow (February 18, 2021) will mark the start of NASA’s ninth surface mission on the Red Planet. Percy will touch down in Jezero crater on Mars, where she will set off exploring new and uncharted terrains in search of ancient signs of life. Nearly 60 years have passed since the first spacecraft were sent to Mars, and it’s inspiring (albeit sometimes unbelievable) to reflect on the progress that has been made since then. First, we sent spacecraft to fly-by, then to orbit, then to land, and finally to rove. As we’ve become more familiar with Mars over time, and as our technological capabilities have improved, our methods of and goals for exploration have evolved in turn.  And with each new mission, humans have pushed the boundaries a little more—or in the case of Percy, a lot more. Here I highlight three new (and particularly challenging) aspects of the Mars 2020 mission that distinguish it from previous missions and that have the potential to significantly impact the future of Mars exploration.

    Credits: Mariah Baker, si.edu

    https://airandspace.si.edu/stories/editorial/driving-mars-exploration-perseverance

    • 11 min
    E45 # NASA Rocket Chasing the Source of the Sun’s Hot Atmosphere

    E45 # NASA Rocket Chasing the Source of the Sun’s Hot Atmosphere

    After glimpsing faint but widespread super-heated material in the Sun’s outer atmosphere, a NASA sounding rocket is going back for more. This time, they’re carrying a new instrument optimized to see it across a wider region of the Sun.

    The mission, known as Extreme Ultraviolet Normal Incidence Spectrograph, or EUNIS for short, will launch from the White Sands Missile Range in New Mexico. The launch window opens on May 18, 2021.

    EUNIS is an instrument suite mounted on a sounding rocket, a type of space vehicle that makes short flights above Earth’s atmosphere before falling back to Earth. Getting to space is important, because EUNIS observes the Sun in a range of extreme ultraviolet light that does not penetrate Earth’s atmosphere.

    For the upcoming flight, the fourth for the EUNIS instrument, the team added a new channel to measure wavelengths between nine and 11 nanometers. (Visible light wavelengths are between 380 and 700 nanometers.)  The new wavelength range is attracting attention after an unexpected finding from EUNIS’s previous flight in 2013.

    Credit: NASA

    • 6 min
    E44 # What happens when two galaxies collide?

    E44 # What happens when two galaxies collide?

    What happens when two galaxies collide?

    One of the brightest galaxies in the night sky, Centaurus A, is well known for its distinct “S” shape. This shape is believed to be the result of a clash between a spiral and an elliptical galaxy about 100 million years ago.

    Now, for the first time, scientists have mapped out the invisible magnetic fields pulsing through Centaurus A using infrared light. The results show how the merging of the two original galaxies created a new, reshaped, and contorted galaxy that not only combined the two galaxies’ magnetic fields but amplified their forces.

    The new observations, made with NASA’s airborne Stratospheric Observatory for Infrared Astronomy, SOFIA, provide new insights into how the early universe may have been shaped by galactic mergers under the influence of their supercharged magnetic fields. The results were recently published in Nature Astronomy.

    “Magnetic fields were key to shaping the early universe, but they did not start out as the forces we know today; somehow they grew stronger over time,” said Dr. Enrique Lopez-Rodriguez a research scientist at Stanford Kavli Institute for Particle Astrophysics and Cosmology in Stanford, California. “Galactic mergers appear to be one of the strengthening mechanisms.”

    Since it is relatively close by intergalactic standards, at 13 million light-years away, Centaurus A makes a good candidate to study galactic mergers. The new view of the large-scale magnetic fields, which span  1,600 light-years, found they run parallel to the dust lanes that are remnants of the original spiral galaxy.

    Credit: NASA

    • 4 min
    E43 # First X-rays from Uranus Discovered

    E43 # First X-rays from Uranus Discovered

    Astronomers have detected X-rays from Uranus for the first time, using NASA’s Chandra X-ray Observatory. This result may help scientists learn more about this enigmatic ice giant planet in our solar system.

    Uranus is the seventh planet from the Sun and has two sets of rings around its equator. The planet, which has four times the diameter of Earth, rotates on its side, making it different from all other planets in the solar system. Since Voyager 2 was the only spacecraft to ever fly by Uranus, astronomers currently rely on telescopes much closer to Earth, like Chandra and the Hubble Space Telescope, to learn about this distant and cold planet that is made up almost entirely of hydrogen and helium.

    In the new study, researchers used Chandra observations taken in Uranus in 2002 and then again in 2017. They saw a clear detection of X-rays from the first observation, just analyzed recently, and a possible flare of X-rays in those obtained fifteen years later. The main graphic shows a Chandra X-ray image of Uranus from 2002 (in pink) superimposed on an optical image from the Keck-I Telescope obtained in a separate study in 2004. The latter shows the planet at approximately the same orientation as it was during the 2002 Chandra observations.

    What could cause Uranus to emit X-rays? The answer: mainly the Sun. Astronomers have observed that both Jupiter and Saturn scatter X-ray light given off by the Sun, similar to how Earth’s atmosphere scatters the Sun’s light. While the authors of the new Uranus study initially expected that most of the X-rays detected would also be from scattering, there are tantalizing hints that at least one other source of X-rays is present. If further observations confirm this, it could have intriguing implications for understanding Uranus.

    One possibility is that the rings of Uranus are producing X-rays themselves, which is the case for Saturn’s rings. Uranus is surrounded by charged particles such as electrons and protons in its nearby space environment. If these energetic particles collide with the rings, they could cause the rings to glow in X-rays. Another possibility is that at least some of the X-rays come from auroras on Uranus, a phenomenon that has previously been observed on this planet at other wavelengths.

    Credit: NASA

    • 3 min
    E42 # Direct Observations Confirm that Humans are Throwing Earth’s Energy Budget off Balance

    E42 # Direct Observations Confirm that Humans are Throwing Earth’s Energy Budget off Balance

    Earth is on a budget – an energy budget. Our planet is constantly trying to balance the flow of energy in and out of Earth’s system. But human activities are throwing that off balance, causing our planet to warm in response.

    Radiative energy enters Earth’s system from the sunlight that shines on our planet. Some of this energy reflects off of Earth’s surface or atmosphere back into space. The rest gets absorbed, heats the planet, and is then emitted as thermal radiative energy the same way that black asphalt gets hot and radiates heat on a sunny day. Eventually this energy also heads toward space, but some of it gets re-absorbed by clouds and greenhouse gases in the atmosphere. The absorbed energy may also be emitted back toward Earth, where it will warm the surface even more.

    Adding more components that absorb radiation – like greenhouse gases – or removing those that reflect it – like aerosols – throws off Earth’s energy balance, and causes more energy to be absorbed by Earth instead of escaping into space. This is called a radiative forcing, and it’s the dominant way human activities are affecting the climate.

    Climate modelling predicts that human activities are causing the release of greenhouse gases and aerosols that are affecting Earth’s energy budget. Now, a NASA study has confirmed these predictions with direct observations for the first time: radiative forcings are increasing due to human actions, affecting the planet’s energy balance and ultimately causing climate change. The paper was published online March 25, 2021, in the journal Geophysical Research Letters.

    “This is the first calculation of the total radiative forcing of Earth using global observations, accounting for the effects of aerosols and greenhouse gases,” said Ryan Kramer, first author on the paper and a researcher at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and the University of Maryland, Baltimore County. “It’s direct evidence that human activities are causing changes to Earth’s energy budget.”

    NASA’s Clouds and the Earth’s Radiant Energy System (CERES) project studies the flow of radiation at the top of Earth’s atmosphere. A series of CERES instruments have continuously flown on satellites since 1997. Each measures how much energy enters Earth’s system and how much leaves, giving the overall net change in radiation. That data, in combination with other data sources such as ocean heat measurements, shows that there’s an energy imbalance on our planet.

    “But it doesn’t tell us what factors are causing changes in the energy balance,” said Kramer.

    This study used a new technique to parse out how much of the total energy change is caused by humans. The researchers calculated how much of the imbalance was caused by fluctuations in factors that are often naturally occurring, such as water vapor, clouds, temperature and surface albedo (essentially the brightness or reflectivity of Earth’s surface). For example, the Atmospheric Infrared Sounder (AIRS) instrument on NASA’s Aqua satellite measures water vapor in Earth’s atmosphere. Water vapor absorbs energy in the form of heat, so changes in water vapor will affect how much energy ultimately leaves Earth’s system. The researchers calculated the energy change caused by each of these natural factors, then subtracted the values from the total. The portion leftover is the radiative forcing.

    Credit: NASA

    • 6 min

Top Podcasts In Science

Hidden Brain
Hidden Brain, Shankar Vedantam
Something You Should Know
Mike Carruthers | OmniCast Media | Cumulus Podcast Network
Radiolab
WNYC Studios
Ologies with Alie Ward
Alie Ward
StarTalk Radio
Neil deGrasse Tyson
Crash Course Pods: The Universe
Crash Course Pods, Complexly