Let’s talk about digital identity with Russ Cohn, the (Go-To-Market) for IDVerse.
In episode 98, Russ Cohn the Go-To-Marketing for IDVerse joins Oscar to explore Generative AI within Identity Verification – including what is generative AI and deepfakes, why deepfakes are a threat for consumers and businesses, and some of the biggest pain points in the identity industry and how generative AI can support this.
[Transcript below]
“It’s very important that we understand these threats and start to mitigate and create ways of helping to support and stop these practices.”
Russ Cohn is the (Go-To-Market) for IDVerse, which provides online identity verification technology for businesses in the digital economy. Russ has spent more than 20 years scaling businesses of all sizes by delivering successful growth strategies across the UK, EMEA & US markets within fast-paced and high-growth online media, fraud, identity, SaaS, e-commerce, and data-driven technology solutions.
His strong tech knowledge is coupled with deep operational and commercial experience building teams within SaaS, advertising and marketing technology-driven revenue models. Russ was previously a key early member of the Google UK leadership team who grew the team from 25 to 3,000 people and the revenue from £10m to £1billion during his tenure. He brings deep experience supporting international technology companies and has a passion for marketing development, startup growth and technology solutions.
IDVerse empowers true identity globally. Our Zero Bias AI™ tested technology pioneered the use of generative AI to train deep neural network systems to protect against discrimination. Our fully-automated solution verifies users in seconds with just their face and smartphone—in over 220 countries and territories with any official ID document.
Connect with Russ on LinkedIn.
We’ll be continuing this conversation on Twitter using #LTADI – join us @ubisecure!
Go to @Ubisecure on YouTube to watch the video transcript for episode 98.
Podcast transcript
What is generative AI? This week Russ Cohn, from IDVerse has joined us to discuss generative AI and deepfakes and the threat this imposes on businesses and consumers for their digital identities. Stay tuned to find out more.
Let’s Talk About Digital Identity, the podcast connecting identity and business. I am your host, Oscar Santolalla.
Oscar Santolalla: Hello and thank you for joining a new episode of Let’s Talk About Digital Identity. Artificial Intelligence, in particular, Generative Artificial Intelligence is a topic that has been, I believe on most of our radars in the last 12 months, particularly. And there are amazing things going on. But also, we know that the bad guys are also using those tools. And one of those is related to deepfakes that are being used to cheat the identity verification system having existing until now.
So, to see how we are going to solve those problems in identity verification, these newer problems, we have a special guest today who is Russ Cohn. He is the go-to market for IDVerse, a company which provides online identification technology for businesses in the digital economy.
Russ has spent more than 20 years scaling businesses of all sizes by delivering successful growth strategies across the UK, EMEA, and US markets, within fast-paced and high-growth online media, fraud, identity, SaaS, e-commerce, and data-driven technology solutions. His strong tech knowledge is coupled with deep operational and commercial experience building things with SaaS, advertising and marketing technology driven revenue models.
Hello, Russ.
Russ Cohn: Hello, Oscar. How are you?
Oscar: Very good. Happy to have you here.
Russ: Thank you. Very glad to be here.
Oscar: Fantastic. It’s great to have you here. And we’ll talk about the deepfakes and how the newest practices in identity verification are solving these problems. So, let’s start, let’s talk about digital identity, Russ.
So first of all, I would like to hear a bit more about yourself, your story. Tell us about yourself and your journey to the world of identity.
Russ: Absolutely. I am fairly new to identity. I’ve only really started in the industry probably just over three years ago. I was the first international employee of OCR Labs, which is we recently rebranded to IDVerse, but I joined about three years ago. We’ve since then built the international team to over half the company, and we continue to grow in EMEA and the US.
As a background, I’m a marketer, a commercial leader, investor. I’ve spent probably over 20 years in technology-driven companies of all sizes. And I was lucky enough to join Google very early on, and there were 20 people in the UK, and 600 people around the world. And I grew up with them a little bit, and I left there with 65,000 people. So, I’ve got a fairly good experience at scanning companies and have invested and advised companies since then.
I’m now, as I said at IDVerse. And I’m focused on the go-to market. So, helping them globally, to take our products and execute them in the best possible areas and help our customers with the most cutting-edge technology to drive identity verification, make it effortless. Obviously, through the use of our sophisticated technologies and techniques, including Generative AI.
I’m excited about the opportunity for identity verification, as the need for verified trusted identities has grown exponentially, globally, really, since the pandemic. And with digital growing at such a phenomenal rate as well, we’re now living in a mobile-first world, and we need the right kind of identity verification to support that growth.
Oscar: Indeed. So, let’s go to some basics. For someone who has heard about that term, Generative AI and still is not so clear what it is, particularly. Could you tell us what is that? What is Generative AI?
Russ: Yeah, sure, I think, you know, everybody is talking about ChatGPT and Bard and it’s brought these techniques, the AI techniques to the public, and we can’t get enough of them. But everyone is using ChatGPT and Bard, etc to learn more, do their jobs better, find new facts. It’s pretty addictive and very, very useful but still at the at the fairly early stage.
So Generative AI, short for Generative Artificial Intelligence refers to a class of artificial intelligence systems and techniques that focus on generating new content or data rather than simply recognising patterns or making decisions based on existing data. Now these systems are designed to create original content that resembles human created data such as images, music, texts, videos, and more.
I use Spotify extensively. I’m sure most people do. And I’ve got an AI system on there now a couple months ago that’s going through my music catalogue in my background and choosing the right music based on my tastes. Generative AI models are generally trained on large datasets, and they learn to understand the underlying patterns and structures within the data.
So once trained, they can produce new examples that are similar to the data they were exposed to during their training. These models are capable of generating content that didn’t exist in the original dataset, making them a very powerful tool for creative tasks in content creation. Now at IDVerse, we’ve been doing Generative AI for a long time, probably since the start, seven or eight years ago.
And we use a technique, a very familiar technique called Generative Adversarial Networks or GANs, I’m sure a lot of your audience will be familiar with. Now GANs, just to go back to basics, consists of two neural networks, a generator and a discriminator. These are trained together in a competitive manner. The generator creates the synthetic data, and the discriminative task is to differentiate between the real and the generated data.
So, the competition between the two networks leads to the generation of increasingly realistic content, which we see everywhere in videos, photos, documents, et cetera. Now, we’ve trained millions of synthetic and real documents and millions and millions of synthetic faces using these techniques. For us, just to be clear, we only use ethically sourced or fair source data for face biometric, particularly in the training. This refers to the facial recognition datasets collected and used in a manner that upholds strict ethical standards and respects individual’s privacy, consent and fairness.
Such data is obtained transparently with informed consent, minimal intrusion and efforts to mitigate bias. So, these measures ensure the responsible and equitable use of biometric technology. In the context of facial identity verification, training data refers to the specialised datasets of facial images used to train the machine learning algorithm, or deep neural networks that are responsible for recognising and verifying individual’s identities based on their facial features.
So that’s quite a mouthful. Hopefully, that gives you some context. But this is how we look at Generative AI in identity verification.
Oscar: Yeah, thank you for that introduction. Of course, in one of the products of this type of Generative AI, in related tools are deepfakes that we are seeing more often, sometimes we saw that only for, like, say cele
Information
- Show
- FrequencyUpdated Biweekly
- PublishedOctober 11, 2023 at 8:00 AM UTC
- Length26 min
- Season5
- Episode98
- RatingClean