Jane Ferguson: Hi everyone. Welcome to Getting Personal: Omics of the Heart, the podcast from Circulation: Genomic and Precision Medicine. I'm Jane Ferguson and this is episode 30 from July 2019. First up we have a paper, the Subtype Specificity of Genetic Loci Associated With Stroke in 16664 cases and 32792 Controls, from Matthew Trailer and colleagues on behalf of the NINDS Stroke Genetics Network and the International Stroke Genetics Consortium. They were interested in understanding whether genetic loci previously found to be associated with stroke have distinct associations with stroke subtypes, specifically ischemic and hemorrhagic stroke. They compiled data sets through an international consortium to analyze 16664 stroke cases and 32792 controls, all of European ancestry. The cases were subtyped using two different stroke classification systems: the Trial of ORG 10172 in Acute Stroke Treatment, or TOAST system, and the Causative Classification of Stroke, or CCS system. They selected genetic loci for consideration based on previous association with stroke in general or stroke subtypes in the MEGASTROKE consortium, which had included a large number of the subjects included in the present study. They used a Bayesian multinomial logistic regression approach to evaluate the association of snips at each locus with stroke subtypes identified under the TOAST and CCS classifications, giving five different case groups compared with a set of controls. 16 loci were taken forward for further analysis. There were seven loci which associated with both ischemic and hemorrhagic strokes subtypes, four which clearly associated with either ischemic or hemorrhagic stroke, with the rest showing less consistent effects. One locus, EDNRA, showed opposite affects for ischemic and hemorrhagic stroke. Overall, the findings indicate a large degree of genetic heterogeneity, but some overlap, suggesting common underlying pathophysiological pathways in different stroke subtypes, potentially related to small vessel disease. More detailed phenotyping and further analysis in large samples is required to fully understand genetic mechanisms underlying the risk of different stroke subtypes. And, just to add, this paper was previously submitted to the pre-print server Bio Archive. We support open science and are always happy to consider papers that have been submitted to pre-print servers. So, if you have a particularly cool paper on Bio Archive that fits our scope, do feel free to send it our way. Next up, we have a paper from Fabiola del Greco, Cristian Pattaro, Peter Pramstaller, Alessandera Rossini, and colleagues, from Eurac Research Institute for Biomedicine. This paper, entitled Lipidomics, Atrial Conduction, and Body Mass Index, Evidence from Association, Mediation, and Mendelian Randomization Models, aims to investigate the mechanisms underlying associations between circulating lipids and atrial conduction. They used mass spectrometry measurement of 151 sphingo- and phospholipids in plasma or serum from individuals who had undergone electrocardiogram measurements to ascertain P-wave duration. They first looked for associations in 839 individuals from the micro islets in South Tyrol, or MICROS study, based in Italy, and replicated in 951 participants of the Orkney Complex Disease Study, ORCADES, based in Scotland. They i