Grinding the Mocks with Benjamin Robinson

Open Source Sports

We discuss Grinding the Bayes: A Hierarchical Modeling Approach to Predicting the NFL Draft with Benjamin Robinson (@benj_robinson). This paper was a finalist in the Carnegie Mellon Sports Analytics Conference Reproducible Research Competition in October 2020. You can submit an abstract to enter the 2021 Reproducible Research Competition now!

Benjamin Robinson is a data scientist living in Washington, D.C. and the creator of Grinding the Mocks, where since 2018 he has used mock drafts, the wisdom of crowds, and data science to predict the NFL Draft.  He is a 2012 graduate of the University of Pittsburgh with degrees in Economics and Urban Studies and earned a Master of Public Policy degree from the University of Southern California in 2014.  You can follow him on Twitter @benj_robinson and find the Grinding the Mocks project at grindingthemocks.com and @GrindingMocks.

For additional references mentioned in the show:


  • Ben's bitbucket repository of data: https://bitbucket.org/benjamin_robinson/grindingthebayes/

  • Bayesian modeling in R with the brms package: https://paul-buerkner.github.io/brms/

  • CMSAC Reproducible Competition abstract submission: http://stat.cmu.edu/cmsac/conference/2021/#mu-research

  • Saiem Gilani's (@SaiemGilani) collection of software: https://sportsdataverse.org/



This is a public episode. If you would like to discuss this with other subscribers or get access to bonus episodes, visit statthinksportsanalytics.substack.com

Pour écouter des épisodes au contenu explicite, connectez‑vous.

Recevez les dernières actualités sur cette émission

Connectez‑vous ou inscrivez‑vous pour suivre des émissions, enregistrer des épisodes et recevoir les dernières actualités.

Choisissez un pays ou une région

Afrique, Moyen‑Orient et Inde

Asie‑Pacifique

Europe

Amérique latine et Caraïbes

États‑Unis et Canada