34 min

How to Use Calculus to Design Learning Machines Learning Machines 101

    • Technology

This particular podcast covers the material from Chapter 5 of my new book “Statistical Machine Learning: A unified framework” which is now available! The book chapter shows how matrix calculus is very useful for the analysis and design of both linear and nonlinear learning machines with lots of examples. We discuss how to use the matrix chain rule for deriving deep learning descent algorithms and how it is relevant to software implementations of deep learning algorithms.  We also discuss how matrix Taylor series expansions are relevant to machine learning algorithm design and the analysis of generalization performance!!
For additional details check out: www.learningmachines101.com and www.statisticalmachinelearning.com
 

This particular podcast covers the material from Chapter 5 of my new book “Statistical Machine Learning: A unified framework” which is now available! The book chapter shows how matrix calculus is very useful for the analysis and design of both linear and nonlinear learning machines with lots of examples. We discuss how to use the matrix chain rule for deriving deep learning descent algorithms and how it is relevant to software implementations of deep learning algorithms.  We also discuss how matrix Taylor series expansions are relevant to machine learning algorithm design and the analysis of generalization performance!!
For additional details check out: www.learningmachines101.com and www.statisticalmachinelearning.com
 

34 min

Top Podcasts In Technology

Acquired
Ben Gilbert and David Rosenthal
No Priors: Artificial Intelligence | Technology | Startups
Conviction | Pod People
Lex Fridman Podcast
Lex Fridman
All-In with Chamath, Jason, Sacks & Friedberg
All-In Podcast, LLC
Hard Fork
The New York Times
Darknet Diaries
Jack Rhysider