Klaviyo Data Science Podcast EP 46 | ML Ops 101

Klaviyo Data Science Podcast

An Introduction to ML Ops 

Building data science products requires many things we’ve discussed on this podcast before: insight, customer empathy, strategic thinking, flexibility, and a whole lot of determination. But it requires one more thing we haven’t talked about nearly as much: a stable, performant, and easy-to-use foundation. Setting up that foundation is the chief goal of the field of machine learning operations, aka ML Ops.

This month on the Klaviyo Data Science Podcast, we give a brief but thorough introduction to the field of ML Ops. You’ll hear about:

  • How ML Ops is different from the similar fields of data science and DevOps
  • What skills a successful ML Ops developer should have, and what an ML Ops developer’s day-to-day looks like
  • Why concepts like “velocity” and “stability” have their own special nuances in the world of ML Ops

For the full show notes, including who's who, see the ⁠⁠⁠⁠⁠⁠Medium writeup⁠⁠⁠⁠⁠⁠.

Bạn cần đăng nhập để nghe các tập có chứa nội dung thô tục.

Luôn cập nhật thông tin về chương trình này

Đăng nhập hoặc đăng ký để theo dõi các chương trình, lưu các tập và nhận những thông tin cập nhật mới nhất.

Chọn quốc gia hoặc vùng

Châu Phi, Trung Đông và Ấn Độ

Châu Á Thái Bình Dương

Châu Âu

Châu Mỹ Latinh và Caribê

Hoa Kỳ và Canada