LLMs and Graphs Synergy

Data Skeptic

In this episode, Garima Agrawal, a senior researcher and AI consultant, brings her years of experience in data science and artificial intelligence. Listeners will learn about the evolving role of knowledge graphs in augmenting large language models (LLMs) for domain-specific tasks and how these tools can mitigate issues like hallucination in AI systems.

Key insights include how LLMs can leverage knowledge graphs to improve accuracy by integrating domain expertise, reducing hallucinations, and enabling better reasoning.

Real-life applications discussed range from enhancing customer support systems with efficient FAQ retrieval to creating smarter AI-driven decision-making pipelines.

Garima’s work highlights how blending static knowledge representation with dynamic AI models can lead to cost-effective, scalable, and human-centered AI solutions.

-------------------------------

Want to listen ad-free?  Try our Graphs Course?  Join Data Skeptic+ for $5 / month of $50 / year

https://plus.dataskeptic.com

Hosts & Guests

To listen to explicit episodes, sign in.

Stay up to date with this show

Sign in or sign up to follow shows, save episodes, and get the latest updates.

Select a country or region

Africa, Middle East, and India

Asia Pacific

Europe

Latin America and the Caribbean

The United States and Canada