Machine Learning

Andrew Ng
Machine Learning

This course provides a broad introduction to machine learning and statistical pattern recognition. The course also discusses recent applications of machine learning, such as to robotic control, data mining, autonomous navigation, bioinformatics, speech recognition, and text and web data processing. Topics include: supervised learning (generative/discriminative learning, parametric/non-parametric learning, neural networks, support vector machines); unsupervised learning (clustering, dimensionality reduction, kernel methods); learning theory (bias/variance tradeoffs; VC theory; large margins); reinforcement learning and adaptive control.

3.9
共 5 分
157 个评分

关于

This course provides a broad introduction to machine learning and statistical pattern recognition. The course also discusses recent applications of machine learning, such as to robotic control, data mining, autonomous navigation, bioinformatics, speech recognition, and text and web data processing. Topics include: supervised learning (generative/discriminative learning, parametric/non-parametric learning, neural networks, support vector machines); unsupervised learning (clustering, dimensionality reduction, kernel methods); learning theory (bias/variance tradeoffs; VC theory; large margins); reinforcement learning and adaptive control.

更多来自“Stanford”的内容

你可能还喜欢

若要收听包含儿童不宜内容的单集,请登录。

关注此节目的最新内容

登录或注册,以关注节目、存储单集,并获取最新更新。

选择国家或地区

非洲、中东和印度

亚太地区

欧洲

拉丁美洲和加勒比海地区

美国和加拿大