Microbiology Lab Pod

Johan Bengtsson-Palme
Microbiology Lab Pod

The Bengtsson-Palme lab podcast discusses new papers, life in academia and science news from the perspective of a research lab on the Swedish west coast.

Tập

  1. 21/09/2022

    September 2022 Pod: Environmental Antibiotic Resistance

    Finally the lab podcast is back! In this episode Microbiology Lab Pod, the team (Johan Bengtsson-Palme, Emil Burman, Anna Abramova, Marcus Wenne, Mirjam Dannborg and Agata Marchi) discusses the environmental antibiotic resistance in anticipation of the EDAR conference coming up later this week! The specific papers discussed in the pod are as follows: * Marcoleta, Andrés E., Patricio Arros, Macarena A. Varas, José Costa, Johanna Rojas-Salgado, Camilo Berríos-Pastén, Sofía Tapia-Fuentes, et al. “The Highly Diverse Antarctic Peninsula Soil Microbiota as a Source of Novel Resistance Genes.” Science of The Total Environment 810 (March 2022): 152003. https://doi.org/10.1016/j.scitotenv.2021.152003* Yi, Xinzhu, Jie-Liang Liang, Jian-Qiang Su, Pu Jia, Jing-li Lu, Jin Zheng, Zhang Wang, et al. “Globally Distributed Mining-Impacted Environments Are Underexplored Hotspots of Multidrug Resistance Genes.” The ISME Journal 16, no. 9 (September 2022): 2099–2113. https://doi.org/10.1038/s41396-022-01258-z* Johnning, Anna, Erik Kristiansson, Jerker Fick, Birgitta Weijdegård, and DG Joakim Larsson. “Resistance Mutations in GyrA and ParC Are Common in Escherichia Communities of Both Fluoroquinolone-Polluted and Uncontaminated Aquatic Environments.” Frontiers in Microbiology 6 (2015): 1355. https://doi.org/10.3389/fmicb.2015.01355* Flach, Carl-Fredrik, Chandan Pal, Carl Johan Svensson, Erik Kristiansson, Marcus Östman, Johan Bengtsson-Palme, Mats Tysklind, and D. G. Joakim Larsson. “Does Antifouling Paint Select for Antibiotic Resistance?” The Science of the Total Environment 590–591 (July 15, 2017): 461–68. https://doi.org/10.1016/j.scitotenv.2017.01.213 The podcast was recorded on September 12, 2022. If you want to reach out to us with comments, suggestions, or other feedback, please send an e-mail to podcast at microbiology dot se or contact @bengtssonpalme via Twitter. The music that can be heard on the pod is composed by Johan Bengtsson-Palme and is taken from the album Cafe Phonocratique.

    1 giờ 12 phút
  2. 05/05/2021

    March 2021 Pod: Antibiotic resistance evolution

    In this episode Microbiology Lab Pod, the team (Johan Bengtsson-Palme, Emil Burman, Anna Abramova, Marcus Wenne, Sebastian Wettersten and Mahbuba Lubna Akter, Shumaila Malik, Emilio Rudbeck and Camille Wuyts) discusses the evolution of antibiotic resistance from different perspectives. We also interview Rémi Gschwind about his work on novel antibiotic resistance genes in the EMBARK program. The specific papers discussed in the pod (with approximate timings) are as follows: * 7:45 – EMBARK website: http://antimicrobialresistance.eu* 26:15 – Seemann, T., 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069. https://doi.org/10.1093/bioinformatics/btu153* 29:00 – Bengtsson-Palme, J., Larsson, D.G.J., 2015. Antibiotic resistance genes in the environment: prioritizing risks. Nature reviews Microbiology 13, 396. https://doi.org/10.1038/nrmicro3399-c1* 29:30 – Ebmeyer, S., Kristiansson, E., Larsson, D.G.J., 2021. A framework for identifying the recent origins of mobile antibiotic resistance genes. Communications Biology 4. https://doi.org/10.1038/s42003-020-01545-5* 54:15 – Gillings, M.R., Stokes, H.W., 2012. Are humans increasing bacterial evolvability? Trends in Ecology & Evolution 27, 346–352. https://doi.org/10.1016/j.tree.2012.02.006* 55:15 – Woods, L.C., et al., 2020. Horizontal gene transfer potentiates adaptation by reducing selective constraints on the spread of genetic variation. Proc Natl Acad Sci USA 117, 26868–26875. https://doi.org/10.1073/pnas.2005331117* 76:15 – Card, K.J., Thomas, M.D., Graves, J.L., Barrick, J.E., Lenski, R.E., 2021. Genomic evolution of antibiotic resistance is contingent on genetic background following a long-term experiment with Escherichia coli. Proc Natl Acad Sci USA 118, e2016886118. https://doi.org/10.1073/pnas.2016886118 The podcast was recorded on March 18, 2021. If you want to reach out to us with comments, suggestions, or other feedback, please send an e-mail to podcast at microbiology dot se or contact @bengtssonpalme via Twitter. The music that can be heard on the pod is composed by Johan Bengtsson-Palme and is taken from the album Cafe Phonocratique.

    1 giờ 41 phút
  3. 28/02/2021

    February 2021 Pod: Global Change

    The Microbiology Lab Pod is back with season two. This first episode was recorded on February 4 and has the theme of global change and effects on microbes. The crew (Johan Bengtsson-Palme, Emil Burman, Anna Abramova, Marcus Wenne, Sebastian Wettersten and Mahbuba Lubna Akter) is joined by two guests – Shumaila Malik and Emilio Rudbeck – and talks about the lab’s most recent publication, the one-year covid anniversary, the effects of global warming and other global change factors on soil microbial communities, and thawing permafrost. The specific papers discussed in the pod (with approximate timings) are as follows: * 5:45 – Abramova, A., Osińska, A., Kunche, H., Burman, E., Bengtsson-Palme, J., 2021. CAFE: a software suite for analysis of paired-sample transposon insertion sequencing data. Bioinformatics. https://doi.org/10.1093/bioinformatics/btaa1086* 8:00 – Bengtsson, J., et al., 2011. Metaxa: a software tool for automated detection and discrimination among ribosomal small subunit (12S/16S/18S) sequences of archaea, bacteria, eukaryotes, mitochondria, and chloroplasts in metagenomes and environmental sequencing datasets. Antonie van Leeuwenhoek 100, 471–475. https://doi.org/10.1007/s10482-011-9598-6* 29:30 – Donhauser, J., Niklaus, P.A., Rousk, J., Larose, C., Frey, B., 2020. Temperatures beyond the community optimum promote the dominance of heat-adapted, fast growing and stress resistant bacteria in alpine soils. Soil Biology and Biochemistry 148, 107873. https://doi.org/10.1016/j.soilbio.2020.107873* 54:30 – Zhou, Z., Wang, C., Luo, Y., 2020. Meta-analysis of the impacts of global change factors on soil microbial diversity and functionality. Nat Commun 11, 3072. https://doi.org/10.1038/s41467-020-16881-7* 60:45 – Bahram, M., et al., 2018. Structure and function of the global topsoil microbiome. Nature 320, 1039. https://doi.org/10.1038/s41586-018-0386-6* 68:15 – Lozano, G.L., et al., 2019. Introducing THOR, a Model Microbiome for Genetic Dissection of Community Behavior. mBio 10. https://doi.org/10.1128/mBio.02846-18* 70:15 – Bengtsson-Palme, J., 2020. Microbial model communities: To understand complexity, harness the power of simplicity. Computational and Structural Biotechnology Journal 18, 3987–4001. https://doi.org/10.1016/j.csbj.2020.11.043* 72:00 – Sajjad, W., et al., 2020. Resurrection of inactive microbes and resistome present in the natural frozen world: Reality or myth? Science of The Total Environment 735, 139275. https://doi.org/10.1016/j.scitotenv.2020.139275* 74:00 – Yashina, S., et al., 2012. Regeneration of whole fertile plants from 30,000-y-old fruit tissue buried in Siberian permafrost. Proceedings of the National Academy of Sciences 109, 4008–4013. https://doi.org/10.1073/pnas.1118386109* 74:30 – Pikuta, E.V., et al., 2005. Carnobacterium pleistocenium sp. nov., a novel psychrotolerant, facultative anaerobe isolated from permafrost of the Fox Tunnel in Alaska. International Journal of Systematic and Evolutionary Microbiology 55, 473–478. https://doi.org/10.1099/ijs.0.63384-0* 75:00 – Bidle, K.D., Lee, S., Marchant, D.R., Falkowski, P.G., 2007. Fossil genes and microbes in the oldest ice on Earth. Proceedings of the National Academy of Sciences 104, 13455–13460. https://doi.org/10.1073/pnas.0702196104* 75:15 – Timofeev, V., et al., 2019. Insights from Bacillus anthracis strains isolated from permafrost in the tundra zone of Russia. PLoS ONE 14, e0209140. https://doi.org/10.1371/journal.pone.0209140* 83:15 – Bengtsson-Palme, J., Boulund, F., Fick, J., Kristiansson, E., Larsson, D.G.J., 2014. Shotgun metagenomics reveals a wide array of antibiotic resistance genes and mobile elements in a polluted lake in India. Frontiers in microbiology 5, 648. https://doi.org/10.3389/fmicb.2014.00648* 84:00 – Bengtsson-Palme, J., Larsson, D.G.J., 2015. Antibiotic resistance genes in the environment: prioritizing risks.

    1 giờ 42 phút
  4. 23/12/2020

    December 2020 Pod: Christmas theme

    In the sixth episode of the Microbiology Lab Pod, recorded on December 17, the crew (Johan Bengtsson-Palme, Emil Burman, Haveela Kunche, Anna Abramova, Marcus Wenne, Sebastian Wettersten and Mahbuba Lubna Akter) talks about Haveela’s master thesis, virtual conferences and bring three Christmas themed papers. The specific papers discussed in the pod (with approximate timings) are as follows: * 13:00 – Fulcher, M.R., Bolton, M.L., Millican, M.D., et al., 2020. Broadening Participation in Scientific Conferences during the Era of Social Distancing. Trends in Microbiology. https://doi.org/10.1016/j.tim.2020.08.004* 25:15 – de Clercq, N.C., Frissen, M.N., Levin, E., et al., 2019. The effect of having Christmas dinner with in-laws on gut microbiota composition. Human Microbiome Journal 13, 100058. https://doi.org/10.1016/j.humic.2019.100058* 44:00 – Garcia-Lemos, A.M., Gobbi, A., et al., 2020. Under the Christmas Tree: Belowground Bacterial Associations With Abies nordmanniana Across Production Systems and Plant Development. Frontiers in Microbiology 11. https://doi.org/10.3389/fmicb.2020.00198* 56:15 – Halverson, L.J., Clayton, M.K., Handelsman, J., 1993. Population biology of Bacillus cereus UW85 in the rhizosphere of field-grown soybeans. Soil Biology and Biochemistry 25, 485–493. https://doi.org/10.1016/0038-0717(93)90074-L* 65:00 – Glendinning, L., Genç, B., Wallace, R.J., Watson, M., 2020. Metagenomic analysis of the cow, sheep, reindeer and red deer rumen. bioRxiv. https://doi.org/10.1101/2020.02.12.945139 The podcast was recorded on December 17, 2020. If you want to reach out to us with comments, suggestions or other feedback, please send an e-mail to podcast at microbiology dot se or contact @bengtssonpalme via Twitter. The music that can be heard on the pod is composed by Johan Bengtsson-Palme and is taken from the album Cafe Phonocratique.

    1 giờ 28 phút
  5. 04/12/2020

    September 2020 Pod: All antibiotic resistance

    This is the fifth episode of the Microbiology Lab Pod and has been lying around on my computer almost finished for way too long. It was recorded on September 23, and the bigger-than-ever-before crew (Johan Bengtsson-Palme, Emil Burman, Haveela Kunche, Anna Abramova, Marcus Wenne, Sebastian Wettersten and Mahbuba Lubna Akter) is joined by Fanny Berglund to discuss computational discovery of novel resistance genes. We also discuss antibiotic resistance mechanisms, particularly in Pseudomonas aeruginosa. The specific papers discussed in the pod (with approximate timings) are as follows: * 5:30 – Berglund, F., Johnning, A., Larsson, D.G.J., Kristiansson, E., 2020. An updated phylogeny of the metallo-b-lactamases. Journal of Antimicrobial Chemotherapy 7. https://doi.org/10.1093/jac/dkaa392* 5:45 – Berglund, F., Österlund, T., Boulund, F., Marathe, N.P., Larsson, D.G.J., Kristiansson, E., 2019. Identification and reconstruction of novel antibiotic resistance genes from metagenomes. Microbiome 7, 52. https://doi.org/10.1186/s40168-019-0670-1* 6:00 – Berglund, F., Marathe, N.P., Österlund, T., Bengtsson-Palme, J., Kotsakis, S., Flach, C.-F., Larsson, D.G.J., Kristiansson, E., 2017. Identification of 76 novel B1 metallo-β-lactamases through large-scale screening of genomic and metagenomic data. Microbiome 5, i29. https://doi.org/10.1186/s40168-017-0353-8* 6:15 – Boulund, F., Berglund, F., Flach, C.-F., Bengtsson-Palme, J., Marathe, N.P., Larsson, D.G.J., Kristiansson, E., 2017. Computational discovery and functional validation of novel fluoroquinolone resistance genes in public metagenomic data sets. BMC Genomics 18, 438. https://doi.org/10.1186/s12864-017-4064-0* 37:15 – Crippen, C.S., Jr., M.J.R., Sanchez, S., Szymanski, C.M., 2020. Multidrug Resistant Acinetobacter Isolates Release Resistance Determinants Through Contact-Dependent Killing and Bacteriophage Lysis. Frontiers in Microbiology 11. https://doi.org/10.3389/fmicb.2020.01918* 52:15 – Leonard, A.F.C., Zhang, L., Balfour, A.J., Garside, R., Hawkey, P.M., Murray, A.K., Ukoumunne, O.C., Gaze, W.H., 2018. Exposure to and colonisation by antibiotic-resistant E. coli in UK coastal water users: Environmental surveillance, exposure assessment, and epidemiological study (Beach Bum Survey). Environment International 114, 326–333. https://doi.org/10.1016/j.envint.2017.11.003* 53:30 – Bengtsson-Palme, J., Kristiansson, E., Larsson, D.G.J., 2018. Environmental factors influencing the development and spread of antibiotic resistance. FEMS Microbiology Reviews 42, 25. https://doi.org/10.1093/femsre/fux053* 54:30 – Leonard, A.F.C., Zhang, L., Balfour, A.J., Garside, R., Gaze, W.H., 2015. Human recreational exposure to antibiotic resistant bacteria in coastal bathing waters. Environment International 82, 92–100. https://doi.org/10.1016/j.envint.2015.02.013* 55:30 – Ahmed, M.N., Abdelsamad, A., Wassermann, T., et al., 2020. The evolutionary trajectories of P. aeruginosa in biofilm and planktonic growth modes exposed to ciprofloxacin: beyond selection of antibiotic resistance. npj Biofilms and Microbiomes 6. https://doi.org/10.1038/s41522-020-00138-8* 69:30 – Rezzoagli, C., Archetti, M., Mignot, I., Baumgartner, M., Kümmerli, R., 2020. Combining antibiotics with antivirulence compounds can have synergistic effects and reverse selection for antibiotic resistance in Pseudomonas aeruginosa. PLOS Biology 18, e3000805. https://doi.org/10.1371/journal.pbio.3000805* 79:45 – Allen, R.C., Popat, R., Diggle, S.P., Brown, S.P., 2014. Targeting virulence: can we make evolution-proof drugs? Nature reviews Microbiology 12, 300–308. https://doi.org/10.1038/nrmicro3232* 80:45 – Köhler, T., Perron, G.G., Buckling, A., van Delden, C., 2010. Quorum Sensing Inhibition Selects for Virulence and Cooperation in Pseudomonas aeruginosa. PLoS Pathogens 6, e1000883. https://doi.org/10.1371/journal.ppat.1000883

    1 giờ 34 phút
  6. 20/09/2020

    August 2020 Pod: From the deep sea to the lost sense of smell

    The fall semester has begun, and with that we have started a new round of recordings of the Microbiology Lab Pod. Our fourth episode was recorded on August 20, and the now-familiar crew (Johan Bengtsson-Palme, Emil Burman, Haveela Kunche and Anna Abramova) has been augmented with two new master students in the lab: Sebastian Wettersten and Mahbuba Lubna Akter. This time, we discuss microbial communities of dead and alive deep-sea hydrothermal vents, look at a model system for pathogenic biofilm formation in the lungs, and check in on why patients with covid-19 commonly lose their sense of smell. The specific papers discussed in the pod (with approximate timings) are as follows: * 11:30 – Hou, J., Sievert, S.M., Wang, Y. et al., 2020. Microbial succession during the transition from active to inactive stages of deep-sea hydrothermal vent sulfide chimneys. Microbiome 8, 102. https://doi.org/10.1186/s40168-020-00851-8* 28:45 – Harrington, N.E., Sweeney, E., Harrison, F., 2020. Building a better biofilm – Formation of in vivo-like biofilm structures by Pseudomonas aeruginosa in a porcine model of cystic fibrosis lung infection. Biofilm 2, 100024. https://doi.org/10.1016/j.bioflm.2020.100024* 52:30 – Brann, D.H., Tsukahara, T., Weinreb, C., et al., 2020. Non-neuronal expression of SARS-CoV-2 entry genes in the olfactory system suggests mechanisms underlying COVID-19-associated anosmia. Science Advances 6, eabc5801. https://doi.org/10.1126/sciadv.abc5801* 71:45 – Chen, M., Shen, W., Rowan, N.R., et al., 2020. Elevated ACE2 expression in the olfactory neuroepithelium: implications for anosmia and upper respiratory SARS-CoV-2 entry and replication. European Respiratory Journal 2001948. https://doi.org/10.1183/13993003.01948-2020* 77:15 – Zhang, X., Wang, J., 2020. Deducing the Dose-response Relation for Coronaviruses from COVID-19, SARS and MERS Meta-analysis Results. medRxiv. https://doi.org/10.1101/2020.06.26.20140624* 78:30 – Sekine, T., Perez-Potti, A., Rivera-Ballesteros, O., et al., 2020. Robust T cell immunity in convalescent individuals with asymptomatic or mild COVID-19. Cell. https://doi.org/10.1016/j.cell.2020.08.017* 79:45 – Mateus, J., Grifoni, A., Tarke, A., et al., 2020. Selective and cross-reactive SARS-CoV-2 T cell epitopes in unexposed humans. Science eabd3871. https://doi.org/10.1126/science.abd3871* 80:30 – Lv, H., Wu, N.C., Tsang, O.T.-Y., et al., 2020. Cross-reactive Antibody Response between SARS-CoV-2 and SARS-CoV Infections. Cell Reports 31, 107725. https://doi.org/10.1016/j.celrep.2020.107725 The podcast was recorded on August 20, 2020. If you want to reach out to us with comments, suggestions or other feedback, please send an e-mail to podcast at microbiology dot se or contact @bengtssonpalme via Twitter. The music that can be heard on the pod is composed by Johan Bengtsson-Palme and is taken from the album Cafe Phonocratique.

    1 giờ 26 phút
  7. 29/08/2020

    June 2020 Pod: Coronavirus galore!

    In the third episode of Microbiology Lab Pod, recorded in June, a crew consisting of Johan Bengtsson-Palme, Emil Burman, Haveela Kunche and Anna Abramova goes into depth with what we knew about the novel coronavirus at the time. We also talk about Emil‘s master thesis, potential alternative antibiotic treatment regimes and the lung microbiome in cystic fibrosis. Unfortunately, the sound quality of this episode is quite bad at times. We have tried to rescue the audio as best as we can, but it is still a bit annoying. We promise to do better next time! The specific papers discussed in the pod (with approximate timings) are as follows: * 18:15 – Lozano, G.L., Bravo, J.I., Garavito Diago, M.F., Park, H.B., Hurley, A., Peterson, S.B., Stabb, E.V., Crawford, J.M., Broderick, N.A., Handelsman, J., 2019. Introducing THOR, a Model Microbiome for Genetic Dissection of Community Behavior. mBio 10. https://doi.org/10.1128/mBio.02846-18* 25:15 – Ghazizadeh, Z. et al. 2020 Androgen Regulates SARS-CoV-2 Receptor Levels and Is Associated with Severe COVID-19 Symptoms in Men. bioArxiv, https://doi.org/10.1101/2020.05.12.091082* 34:45 – St. John, A.L., Rathore, A.P.S 2020. Early Insights into Immune Responses during COVID-19. The Journal of Immunology 205, 555-564. https://doi.org/10.4049/jimmunol.2000526* 49:30 – Worobey, M., Pekar, J., Larsen, B.B., Nelson, M.I., Hill, V., Joy, J.B., Rambaut, A., Suchard, M.A., Wertheim, J.O., Lemey, P., 2020. The emergence of SARS-CoV-2 in Europe and the US. bioRxiv. https://doi.org/10.1101/2020.05.21.109322* 52:00 – La Rosa, G., Mancini, P., Bonanno Ferraro, G., Veneri, C., Iaconelli, M., Bonadonna, L., Lucentini, L., Suffredini, E., 2020. SARS-CoV-2 has been circulating in northern Italy since December 2019: evidence from environmental monitoring. medRxiv. https://doi.org/10.1101/2020.06.25.20140061* 52:30 – https://lakartidningen.se/aktuellt/nyheter/2020/06/viruset-kan-ha-funnits-i-dalarna-redan-i-december/* 53:15 – Deslandes, A., Berti, V., Tandjaoui-Lambotte, Y., Alloui, C., Carbonnelle, E., Zahar, J.R., Brichler, S., Cohen, Y., 2020. SARS-CoV-2 was already spreading in France in late December 2019. International Journal of Antimicrobial Agents 55, 106006. https://doi.org/10.1016/j.ijantimicag.2020.106006* 54:45 – Li, X., Giorgi, E.E., Marichannegowda, M.H., Foley, B., Xiao, C., Kong, X.-P., Chen, Y., Gnanakaran, S., Korber, B., Gao, F., 2020. Emergence of SARS-CoV-2 through recombination and strong purifying selection. Science Advances eabb9153. https://doi.org/10.1126/sciadv.abb9153* 56:00 – Lehmann, D., Halbwax, M.L., Makaga, L., Whytock, R., Ndindiwe Malata, L., Bombenda Mouele, W., Momboua, B.R., Koumba Pambo, A.F., White, L.J.T., 2020. Pangolins and bats living together in underground burrows in Lopé National Park, Gabon. African Journal of Ecology 58, 540–542. https://doi.org/10.1111/aje.12759* 61:15 – Cuthbertson, L., Walker, A.W., Oliver, A.E., Rogers, G.B., Rivett, D.W., Hampton, T.H., Ashare, A., Elborn, J.S., De Soyza, A., Carroll, M.P., Hoffman, L.R., Lanyon, C., Moskowitz, S.M., O’Toole, G.A., Parkhill, J., Planet, P.J., Teneback, C.C., Tunney, M.M., Zuckerman, J.B., Bruce, K.D., van der Gast, C.J., 2020. Lung function and microbiota diversity in cystic fibrosis. Microbiome 8. https://doi.org/10.1186/s40168-020-00810-3* 70:15 – Hansen, E., Karslake, J., Woods, R.J., Read, A.F., Wood, K.B., 2020. Antibiotics can be used to contain drug-resistant bacteria by maintaining sufficiently large sensitive populations. PLOS Biology 18, e3000713. https://doi.org/10.1371/journal.pbio.3000713 The podcast was recorded on June 23, 2020. If you want to reach out to us with comments, suggestions or other feedback, please send an e-mail to podcast at microbiology dot se or contact @bengtssonpalme via Twitter. The music that can be heard on the pod is composed by Johan Bengtsson-Pa...

    1 giờ 22 phút
  8. 29/05/2020

    May 2020 Pod: Discovering novel resistance genes and how bacteria become virulent

    In the second episode of Microbiology Lab Pod, a crew consisting of Johan Bengtsson-Palme, Emil Burman, Haveela Kunche and Anna Abramova discusses how to identify novel resistance genes with our special guest Marlies Böhm. We also talk about bacterial virulence: how do bacteria become virulent, how do virulence relate to competition, how do bacteria evade the immune system and can we attenuate virulence using fatty acids? The specific papers discussed in the pod (with approximate timings) are as follows: * 7:15 – Böhm, M.-E., Razavi, M., Flach, C.-F., Larsson, D.G.J., 2020a. A Novel, Integron-Regulated, Class C β-Lactamase. Antibiotics 9, 123. https://doi.org/10.3390/antibiotics9030123* 7:15 – Böhm, M.-E., Razavi, M., Marathe, N.P., Flach, C.-F., Larsson, D.G.J., 2020b. Discovery of a novel integron-borne aminoglycoside resistance gene present in clinical pathogens by screening environmental bacterial communities. Microbiome 8. https://doi.org/10.1186/s40168-020-00814-z* 9:15 – Makowska, N., et al., 2020. Occurrence of integrons and antibiotic resistance genes in cryoconite and ice of Svalbard, Greenland, and the Caucasus glaciers. Science of The Total Environment 716, 137022. https://doi.org/10.1016/j.scitotenv.2020.137022* 20:45 – Marathe, N.P., et al., 2019. Scandinavium goeteborgense gen. nov., sp. nov., a New Member of the Family Enterobacteriaceae Isolated From a Wound Infection, Carries a Novel Quinolone Resistance Gene Variant. Frontiers in Microbiology 10. https://doi.org/10.3389/fmicb.2019.02511* 33:45 – Kaito, C., Yoshikai, H., Wakamatsu, A., Miyashita, A., Matsumoto, Y., Fujiyuki, T., Kato, M., Ogura, Y., Hayashi, T., Isogai, T., Sekimizu, K., 2020. Non-pathogenic Escherichia coli acquires virulence by mutating a growth-essential LPS transporter. PLOS Pathogens 16, e1008469. https://doi.org/10.1371/journal.ppat.1008469* 43:45 – Lories, B., Roberfroid, S., Dieltjens, L., De Coster, D., Foster, K.R., Steenackers, H.P., 2020. Biofilm Bacteria Use Stress Responses to Detect and Respond to Competitors. Current Biology 30, 1231-1244.e4. https://doi.org/10.1016/j.cub.2020.01.065* 45:45 – Lozano, G.L., Bravo, J.I., Garavito Diago, M.F., Park, H.B., Hurley, A., Peterson, S.B., Stabb, E.V., Crawford, J.M., Broderick, N.A., Handelsman, J., 2019. Introducing THOR, a Model Microbiome for Genetic Dissection of Community Behavior. mBio 10. https://doi.org/10.1128/mBio.02846-18* 55:45 – Kumar, P., Lee, J.-H., Beyenal, H., Lee, J., 2020. Fatty Acids as Antibiofilm and Antivirulence Agents. Trends in Microbiology. https://doi.org/10.1016/j.tim.2020.03.014* 60:15 – Gullberg, E., Cao, S., Berg, O.G., Ilbäck, C., Sandegren, L., Hughes, D., Andersson, D.I., 2011. Selection of resistant bacteria at very low antibiotic concentrations. PLoS Pathogens 7, e1002158. https://doi.org/10.1371/journal.ppat.1002158* 61:15 – Larsson, D.G.J., 2018. Risks of using the natural defence of commensal bacteria as antibiotics call for research and regulation. International Journal of Antimicrobial Agents 51, 277–278. https://doi.org/10.1016/j.ijantimicag.2017.12.018* 65:15 – Lone, A.G., Bankhead, T., 2020. The Borrelia burgdorferi VlsE Lipoprotein Prevents Antibody Binding to an Arthritis-Related Surface Antigen. Cell Reports 30, 3663-3670.e5. https://doi.org/10.1016/j.celrep.2020.02.081 The podcast was recorded on May 7, 2020. If you want to reach out to us with comments, suggestions or other feedback, please send an e-mail to podcast at microbiology dot se or contact @bengtssonpalme via Twitter. The music that can be heard on the pod is composed by Johan Bengtsson-Palme and is taken from the album Cafe Phonocratique.

    1 giờ 18 phút
  9. 22/04/2020

    April 2020 Pod: The origin of the coronavirus, and more

    In the very first episode of the Bengtsson-Palme lab podcast, a crew consisting of Johan Bengtsson-Palme, Emil Burman, Haveela Kunche and Anna Abramova discusses the origin of the novel coronavirus, interactions between influenza and the respiratory tract microbiome, resistant bacteria in glaciers, pathway analysis methods, a new genus of bacteria discovered in Gothenburg, as well as life in research during a global pandemic. The specific papers discussed in the pod (with approximate timings) are as follows: * 10:15 – Andersen, K.G., Rambaut, A., Lipkin, W.I., Holmes, E.C., Garry, R.F., 2020. The proximal origin of SARS-CoV-2. Nature Medicine 26, 450–452. https://doi.org/10.1038/s41591-020-0820-9* 17:30 – Zhou, P., et al., 2020. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579, 270–273. https://doi.org/10.1038/s41586-020-2012-7* 19:30 – https://www.fli.de/en/press/press-releases/press-singleview/novel-coronavirus-sars-cov-2-fruit-bats-and-ferrets-are-susceptible-pigs-and-chickens-are-not/* 20:45 – Kadioglu, O., Saeed, M., Greten, H.J., Efferth, T, 2020. Identification of novel compound against three targets of SARS CoV-2 coronavirus by combined virtual screening and supervised machine learning. Bulletin of the World Health Organization. https://doi.org/10.2471/BLT.20.255943* 21:45 – Cheng, V.C.C., Lau, S.K.P., Woo, P.C.Y., Yuen, K.Y., 2007. Severe Acute Respiratory Syndrome Coronavirus as an Agent of Emerging and Reemerging Infection. Clinical Microbiology Reviews 20, 660–694. https://doi.org/10.1128/CMR.00023-07* 22:15 – Fan, Y., Zhao, K., Shi, Z.-L., Zhou, P., 2019. Bat Coronaviruses in China. Viruses 11, 210. https://doi.org/10.3390/v11030210* 29:15 – Zhang, L., et al., 2020. Characterization of antibiotic resistance and host-microbiome interactions in the human upper respiratory tract during influenza infection. Microbiome 8. https://doi.org/10.1186/s40168-020-00803-2* 39:15 – Makowska, N., et al., 2020. Occurrence of integrons and antibiotic resistance genes in cryoconite and ice of Svalbard, Greenland, and the Caucasus glaciers. Science of The Total Environment 716, 137022. https://doi.org/10.1016/j.scitotenv.2020.137022* 49:45 – Bengtsson-Palme, J., Boulund, F., Fick, J., Kristiansson, E., Larsson, D.G.J., 2014. Shotgun metagenomics reveals a wide array of antibiotic resistance genes and mobile elements in a polluted lake in India. Frontiers in microbiology 5, 648. https://doi.org/10.3389/fmicb.2014.00648* 58:45 – Gillings, M.R., 2014. Integrons: past, present, and future. Microbiology and molecular biology reviews : MMBR 78, 257–277. https://doi.org/10.1128/MMBR.00056-13* 60:45 – Moradi, E., Marttinen, M., Häkkinen, T., Hiltunen, M., Nykter, M., 2019. Supervised pathway analysis of blood gene expression profiles in Alzheimer’s disease. Neurobiology of Aging 84, 98–108. https://doi.org/10.1016/j.neurobiolaging.2019.07.004* 62:15 – Johnson, W.E., Li, C., Rabinovic, A., 2007. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 8, 118–127. https://doi.org/10.1093/biostatistics/kxj037* 72:15 – Marathe, N.P., et al., 2019. Scandinavium goeteborgense gen. nov., sp. nov., a New Member of the Family Enterobacteriaceae Isolated From a Wound Infection, Carries a Novel Quinolone Resistance Gene Variant. Frontiers in Microbiology 10. https://doi.org/10.3389/fmicb.2019.02511* 76:00 – Boulund, F., et al., 2017. Computational discovery and functional validation of novel fluoroquinolone resistance genes in public metagenomic data sets. BMC Genomics 18, 438. https://doi.org/10.1186/s12864-017-4064-0 The podcast was recorded on April 9, 2020. If you want to reach out to us with comments, suggestions or other feedback, please send an e-mail to podcast at microbiology dot se or con...

    1 giờ 21 phút

Xếp Hạng & Nhận Xét

3
/5
2 Xếp hạng

Giới Thiệu

The Bengtsson-Palme lab podcast discusses new papers, life in academia and science news from the perspective of a research lab on the Swedish west coast.

Bạn cần đăng nhập để nghe các tập có chứa nội dung thô tục.

Luôn cập nhật thông tin về chương trình này

Đăng nhập hoặc đăng ký để theo dõi các chương trình, lưu các tập và nhận những thông tin cập nhật mới nhất.

Chọn quốc gia hoặc vùng

Châu Phi, Trung Đông và Ấn Độ

Châu Á Thái Bình Dương

Châu Âu

Châu Mỹ Latinh và Caribê

Hoa Kỳ và Canada