OpenAI Codex Team: From Coding Autocomplete to Asynchronous Autonomous Agents

Training Data

Hanson Wang and Alexander Embiricos from OpenAI's Codex team discuss their latest AI coding agent that works independently in its own environment for up to 30 minutes, generating full pull requests from simple task descriptions. They explain how they trained the model beyond competitive programming to match real-world software engineering needs, the shift from pairing with AI to delegating to autonomous agents, and their vision for a future where the majority of code is written by agents working on their own computers. The conversation covers the technical challenges of long-running inference, the importance of creating realistic training environments, and how developers are already using Codex to fix bugs and implement features at OpenAI.

Hosted by Sonya Huang and Lauren Reeder, Sequoia Capital 

Mentioned in this episode

  • The Culture: Sci-Fi series by Iain Banks portraying an optimistic view of AI


The Bitter Lesson: Influential paper by Rich Sutton on the importance of scale as a strategic unlock for AI.

Para escuchar episodios explícitos, inicia sesión.

Mantente al día con este programa

Inicia sesión o regístrate para seguir programas, guardar episodios y enterarte de las últimas novedades.

Elige un país o región

Africa, Oriente Medio e India

Asia-Pacífico

Europa

Latinoamérica y el Caribe

Estados Unidos y Canadá