Physique de l'intérieur de la terre - Barbara Romanowicz

Physique de l'intérieur de la terre - Barbara Romanowicz

L'existence de la tectonique des plaques est acceptée depuis plus de cinquante ans, mais il reste encore beaucoup à découvrir sur le fonctionnement du « moteur » interne qui la nourrit et sur l'évolution de la terre et des planètes rocheuses au cours des temps géologiques. L'intérieur profond de ces planètes n'étant pas directement accessible, ceci nécessite une approche pluridisciplinaire qui combine les informations apportées par différentes spécialités des sciences de la terre. Dans les premières séries de cours, les processus dynamiques qui animent le noyau de la terre, son manteau profond, et le système lithosphère-asthénosphère ont été abordés. Une série de cours a été consacrée aux planètes et objets rocheux du système solaire. Plus récemment, l'ensemble des processus de déformation dans le manteau ont été étudiés. Les résultats récents sur la sismogénèse des tremblements de terre géants ainsi que celle des séismes profonds ont également été présentés. Pour la dernière série de cours de cette chaire, les techniques de pointe d'imagerie sismique de la terre profonde seront présentées.

  1. ٠٤‏/٠٣‏/١٤٤٠ هـ

    04 - Les séismes profonds

    Barbara Romanowicz Physique de l'intérieur de la terre Année 2018-2019 Les séismes profonds Bibliographie Cours no 3 - Séismes de profondeur intermédiaire et déshydratation de la croûte et de la lithosphère Brudzinski, M. R., C. H. Thurber, B. R. Hacker and E. R. Engdahl (2007) Global Prevalence of Double Benioff Zones, Science, 316, 1472-1474. Faccenda, M. (2014) Water in the slab: a trilogy, Tectonophys. 614, 1-30. Garth, T. and A. Riebrock (2017) Constraining the hydration of the subducting Nazca plate beneath northern Chile using subduction zone guided waves, Earth Planet. Sci. lett, 474, 237-247. Hacker, B., R., S. M. Peacock, G. A. Abers and S. D. Holloway (2003) Subduction factory. 2. Are intermediate-depth earthquakes in subducting slabs linked to metamorphic dehydration reactions? J. Geophys. Res., 108, B1, 2030. Kawakatsu, H. (1985) Double seismic zones in Tonga, Nature, 316, 53-55 Kawakatsu, H. and S. Watada (2008) Seismic Evidence for Deep-Water Transportation in the Mantle, Science, 316, 1468-1471. Kita, S., T. Okada, A. Hasegawa, J. Nakjima, T. Matsuzawa (2010) Existence of interplane earthquakes and neutral stress boundary between the upper and lower planes of the double seismic zone beneath Tohoku and Hokkaido in northeastern Japan, Tectonoph. 496, 68-92. Kirby, S., E. R. Engdahl, R. Denlinger (1996) Intermediate-Depth Intraslab Earthquakes and Arc Volcanismas physical expression of mantle metamorphism in subducting slabs (Overview), in "SUbduction Top to Bottom", AGU Monograph Series, edited by G. B. Bebout et al., AGU, Washington, D.C. Naif, S., K. Key, S. Constable, and R. L. Evans (2015) Water-rih bending faults at the Middle AMerica Trench, G-Cubed, 16, 2582-2597. Ranero, C. R., J. P. Morgan, K. McINtosh and C. Reichert (2003) Bending-related faulting and mantle serpentinization at the Middle America Trench, Nature 425, 367-373. Peacock, S. M. (2001) Are the lower planes of double seismic zones caused by serpentine dehydration in subducting oceanic mantle? Geology, 29, 299-302. Reynard, B. (2013) Serpentine in active subduction zones, Lithos, 178, 171-185. Rondenay, S., G. A. Abers and P. E. van Keken (2008) Seismic imaging of subduction zone metamorphism, Geology, 36, 275-278. Shillington, D. J., A. Becel., M. R. Nedimovic, H. Kuehn et al. (2015) Link between plate fabric, hydration and subduction zone seismicity in Alaska, Nat. Geosc., 8, 961- 964

    ١ س ٣٤ د
  2. ٢٧‏/٠٢‏/١٤٤٠ هـ

    03 - Les séismes profonds

    Barbara Romanowicz Physique de l'intérieur de la terre Année 2018-2019 Les séismes profonds Bibliographie Cours no 3 - Séismes de profondeur intermédiaire et déshydratation de la croûte et de la lithosphère Brudzinski, M. R., C. H. Thurber, B. R. Hacker and E. R. Engdahl (2007) Global Prevalence of Double Benioff Zones, Science, 316, 1472-1474. Faccenda, M. (2014) Water in the slab: a trilogy, Tectonophys. 614, 1-30. Garth, T. and A. Riebrock (2017) Constraining the hydration of the subducting Nazca plate beneath northern Chile using subduction zone guided waves, Earth Planet. Sci. lett, 474, 237-247. Hacker, B., R., S. M. Peacock, G. A. Abers and S. D. Holloway (2003) Subduction factory. 2. Are intermediate-depth earthquakes in subducting slabs linked to metamorphic dehydration reactions? J. Geophys. Res., 108, B1, 2030. Kawakatsu, H. (1985) Double seismic zones in Tonga, Nature, 316, 53-55 Kawakatsu, H. and S. Watada (2008) Seismic Evidence for Deep-Water Transportation in the Mantle, Science, 316, 1468-1471. Kita, S., T. Okada, A. Hasegawa, J. Nakjima, T. Matsuzawa (2010) Existence of interplane earthquakes and neutral stress boundary between the upper and lower planes of the double seismic zone beneath Tohoku and Hokkaido in northeastern Japan, Tectonoph. 496, 68-92. Kirby, S., E. R. Engdahl, R. Denlinger (1996) Intermediate-Depth Intraslab Earthquakes and Arc Volcanismas physical expression of mantle metamorphism in subducting slabs (Overview), in "SUbduction Top to Bottom", AGU Monograph Series, edited by G. B. Bebout et al., AGU, Washington, D.C. Naif, S., K. Key, S. Constable, and R. L. Evans (2015) Water-rih bending faults at the Middle AMerica Trench, G-Cubed, 16, 2582-2597. Ranero, C. R., J. P. Morgan, K. McINtosh and C. Reichert (2003) Bending-related faulting and mantle serpentinization at the Middle America Trench, Nature 425, 367-373. Peacock, S. M. (2001) Are the lower planes of double seismic zones caused by serpentine dehydration in subducting oceanic mantle? Geology, 29, 299-302. Reynard, B. (2013) Serpentine in active subduction zones, Lithos, 178, 171-185. Rondenay, S., G. A. Abers and P. E. van Keken (2008) Seismic imaging of subduction zone metamorphism, Geology, 36, 275-278. Shillington, D. J., A. Becel., M. R. Nedimovic, H. Kuehn et al. (2015) Link between plate fabric, hydration and subduction zone seismicity in Alaska, Nat. Geosc., 8, 961- 964

    ١ س ٣٢ د

حول

L'existence de la tectonique des plaques est acceptée depuis plus de cinquante ans, mais il reste encore beaucoup à découvrir sur le fonctionnement du « moteur » interne qui la nourrit et sur l'évolution de la terre et des planètes rocheuses au cours des temps géologiques. L'intérieur profond de ces planètes n'étant pas directement accessible, ceci nécessite une approche pluridisciplinaire qui combine les informations apportées par différentes spécialités des sciences de la terre. Dans les premières séries de cours, les processus dynamiques qui animent le noyau de la terre, son manteau profond, et le système lithosphère-asthénosphère ont été abordés. Une série de cours a été consacrée aux planètes et objets rocheux du système solaire. Plus récemment, l'ensemble des processus de déformation dans le manteau ont été étudiés. Les résultats récents sur la sismogénèse des tremblements de terre géants ainsi que celle des séismes profonds ont également été présentés. Pour la dernière série de cours de cette chaire, les techniques de pointe d'imagerie sismique de la terre profonde seront présentées.

المزيد من Collège de France

قد يعجبك أيضًا

للاستماع إلى حلقات ذات محتوى فاضح، قم بتسجيل الدخول.

اطلع على آخر مستجدات هذا البرنامج

قم بتسجيل الدخول أو التسجيل لمتابعة البرامج وحفظ الحلقات والحصول على آخر التحديثات.

تحديد بلد أو منطقة

أفريقيا والشرق الأوسط، والهند

آسيا والمحيط الهادئ

أوروبا

أمريكا اللاتينية والكاريبي

الولايات المتحدة وكندا