UGA: What Data Reveals About Consumer Finance

Data Dialogues

Dr. Nikhil Paradkar, assistant professor in finance at the Terry College of Business at the University of Georgia, discusses his research on using data and machine learning to better understand how financial changes due to regulation, technological advancements or crises can impact the availability of credit for households. He also tells our host, Jeff Dugger, Principal Data Scientist and University Research Director at Equifax, about some very interesting research on corporate buzzwords, innovation and company earnings calls.

Jump ahead to these topics:

:58 - Paradkar provides an overview of his work at UGA

1:35 - Paradkar explains the research he presented to the Consumer Financial Protection Bureau on bank funding shocks

3:35 - If a consumer’s credit limit is reduced, how does it impact their credit score?

5:00 - Can consumers who are more exposed to their bank’s liquidity shocks have an impact on a financial recovery?

6:40 - The CFPB’s reaction to Paradkar’s research

9:10 - What machine learning has revealed about consumer finance and Fintechs

12:25 - Paradkar explains his machine learning technique used in his research

13:38 - Can lenders use Paradkar’s research to improve their lending?

15:02 - Is there a latent unobservable variable that causes FinTech borrowers to be more likely to default?

16:41 - How Paradkar uses machine learning to study corporate buzzwords, innovations and quarterly earnings calls


Learn more about our guest, Nikhil Paradkar: https://www.terry.uga.edu/directory/finance/nikhil-paradkar.html

Bạn cần đăng nhập để nghe các tập có chứa nội dung thô tục.

Luôn cập nhật thông tin về chương trình này

Đăng nhập hoặc đăng ký để theo dõi các chương trình, lưu các tập và nhận những thông tin cập nhật mới nhất.

Chọn quốc gia hoặc vùng

Châu Phi, Trung Đông và Ấn Độ

Châu Á Thái Bình Dương

Châu Âu

Châu Mỹ Latinh và Caribê

Hoa Kỳ và Canada