Arnaud et Emmanuel discutent des versions Java, font un résumé de l’ecosystème WebAssembly, discutent du nouveau Model Context Protocol, parlent d’observabilité avec notamment les Wide Events et de pleins d’autres choses encore. Enregistré le 17 janvier 2025 Téléchargement de l’épisode LesCastCodeurs-Episode–321.mp3 ou en vidéo sur YouTube. News Langages java trend par InfoQ https://www.infoq.com/articles/java-trends-report–2024/ Java 17 finalement depasse 11 et 8 ~30/33% Java 21 est à 1.4% commonhaus apparait GraalVM en early majority Spring AI et langchain4j en innovateurs SB 3 voit son adoption augmenter Un bon résumé sur WebAssembly, les différentes specs comme WASM GC, WASI, WIT, etc https://2ality.com/2025/01/webassembly-language-ecosystem.html WebAssembly (Wasm) est un format d’instructions binaires pour une machine virtuelle basée sur une pile, permettant la portabilité et l’efficacité du code. Wasm a évolué à partir d’asm.js, un sous-ensemble de JavaScript qui pouvait fonctionner à des vitesses proches de celles natives. WASI (WebAssembly System Interface) permet à Wasm de fonctionner en dehors des navigateurs Web, fournissant des API pour le système de fichiers, CLI, HTTP, etc. Le modèle de composant WebAssembly permet l’interopérabilité entre les langages Wasm à l’aide de WIT (Wasm Interface Type) et d’ABI canonique. Les composants Wasm se composent d’un module central et d’interfaces WIT pour les importations/exportations, facilitant l’interaction indépendante du langage. Les interfaces WIT décrivent les types et les fonctions, tandis que les mondes WIT définissent les capacités et les besoins d’un composant (importations/exportations). La gestion des packages Wasm est assurée par Warg, un protocole pour les registres de packages Wasm. Une enquête a montré que Rust est le langage Wasm le plus utilisé, suivi de Kotlin et de C++; de nombreux autres langages sont également en train d’émerger. Un algorithme de comptage a taille limitée ne mémoire a été inventé https://www.quantamagazine.org/computer-scientists-invent-an-efficient-new-way-to-count–20240516/ élimine un mot de manière aléatoire mais avec une probabilité connue quand il y a besoin de récupérer de l’espace cela se fait par round et on augmente la probabilité de suppression à chaque round donc au final, ne nombre de mots / la probabilité d’avoir été éliminé donne une mesure approximative mais plutot précise Librairies Les contributions Spring passent du CLA au DCO https://spring.io/blog/2025/01/06/hello-dco-goodbye-cla-simplifying-contributions-to-spring d’abord manuel amis meme automatisé le CLA est une document legal complexe qui peut limiter les contribuitions le DCO vient le Linux je crois et est super simple accord que la licence de la conmtrib est celle du projet accord que le code est public et distribué en perpetuité s’appuie sur les -s de git pour le sign off Ecrire un serveur MCP en Quarkus https://quarkus.io/blog/mcp-server/ MCP est un protocol proposé paor Antropic pour integrer des outils orchestrables par les LLMs MCP est frais et va plus loin que les outils offre la notion de resource (file), de functions (tools), et de proimpts pre-built pour appeler l’outil de la meilleure façon On en reparlera a pres avec les agent dans un article suivant il y a une extension Quarkus pour simplifier le codage un article plus detaillé sur l’integration Quarkus https://quarkus.io/blog/quarkus-langchain4j-mcp/ GreenMail un mini mail server en java https://greenmail-mail-test.github.io/greenmail/#features-api Utile pour les tests d’integration Supporte SMTP, POP3 et IMAP avec TLS/SSL Propose des integrations JUnit, Spring Une mini UI et des APIs REST permettent d’interagir avec le serveur si par exemple vous le partagé dans un container (il n’y a pas d’integration TestContainer existante mais elle n’est pas compliquée à écrire) Infrastructure Docker Bake in a visual way https://dev.to/aurelievache/understanding-docker-part–47-docker-bake–4p05 docker back propose d’utiliser des fichiers de configuration (format HCL) pour lancer ses builds d’images et docker compose en gros voyez ce DSL comme un Makefile très simplifié pour les commandes docker qui souvent peuvent avoir un peu trop de paramètres Datadog continue de s’etendre avec l’acquisition de Quickwit https://www.datadoghq.com/blog/datadog-acquires-quickwit/ Solution open-source de recherche des logs qui peut être déployée on-premise et dans le cloud https://quickwit.io/ Les logs ne quittent plus votre environment ce qui permet de répondre à des besoins de sécurité, privacy et réglementaire Web 33 concepts en javascript https://github.com/leonardomso/33-js-concepts Call Stack, Primitive Types, Value Types and Reference Types, Implicit, Explicit, Nominal, Structuring and Duck Typing, == vs === vs typeof, Function Scope, Block Scope and Lexical Scope, Expression vs Statement, IIFE, Modules and Namespaces, Message Queue and Event Loop, setTimeout, setInterval and requestAnimationFrame, JavaScript Engines, Bitwise Operators, Type Arrays and Array Buffers, DOM and Layout Trees, Factories and Classes, this, call, apply and bind, new, Constructor, instanceof and Instances, Prototype Inheritance and Prototype Chain, Object.create and Object.assign, map, reduce, filter, Pure Functions, Side Effects, State Mutation and Event Propagation, Closures, High Order Functions, Recursion, Collections and Generators, Promises, async/await, Data Structures, Expensive Operation and Big O Notation, Algorithms, Inheritance, Polymorphism and Code Reuse, Design Patterns, Partial Applications, Currying, Compose and Pipe, Clean Code Data et Intelligence Artificielle Phi 4 et les small language models https://techcommunity.microsoft.com/blog/aiplatformblog/introducing-phi–4-microsoft%e2%80%99s-newest-small-language-model-specializing-in-comple/4357090 Phi 4 un SML pour les usages locaux notamment 14B de parametres belle progression de ~20 points sur un score aggregé et qui le rapproche de Llama 3.3 et ses 70B de parametres bon en math (data set synthétique) Comment utiliser Gemini 2.0 Flash Thinking (le modèle de Google qui fait du raisonnement à la sauce chain of thought) en Java avec LangChain4j https://glaforge.dev/posts/2024/12/20/lets-think-with-gemini–2-thinking-mode-and-langchain4j/ Google a sorti Gemini 2.0 Flash, un petit modèle de la famille Gemini the “thinking mode” simule les cheminements de pensée (Chain of thoughts etc) décompose beaucoup plus les taches coplexes en plusiewurs taches un exemple est montré sur le modele se battant avec le probleme Les recommendations d’Antropic sur les systèmes d’agents https://www.anthropic.com/research/building-effective-agents défini les agents et les workflow Ne recommence pas les frameworks (LangChain, Amazon Bedrock AI Agent etc) le fameux débat sur l’abstraction Beaucoup de patterns implementable avec quelques lignes sans frameworks Plusieurs blocks de complexité croissante Augmented LLM (RAG, memory etc): Anthropic dit que les LLMs savent coordonner cela via MCP apr exemple Second: workflow prompt chaining : avec des gates et appelle les LLMs savent coordonner successivement ; favorise la precision vs la latence vu que les taches sont décomposées en plusieurs calls LLMs Workflow routing: classifie une entree et choisie la route a meilleure: separation de responsabilité Workflow : parallelisation: LLM travaillent en paralllele sur une tache et un aggregateur fait la synthèse. Paralleisaiton avec saucissonage de la tache ou voter sur le meilleur réponse Workflow : orchestrator workers: quand les taches ne sont pas bounded ou connues (genre le nombre de fichiers de code à changer) - les sous taches ne sont pas prédéfinies Workflow: evaluator optimizer: nun LLM propose une réponse, un LLM l’évalue et demande une meilleure réponse au besoin Agents: commande ou interaction avec l;humain puis autonome meme si il peut revenir demander des precisions à l’humain. Agents sont souvent des LLM utilisât des outil pour modifier l’environnement et réagir a feedback en boucle Ideal pour les problèmes ouverts et ou le nombre d’étapes n’est pas connu Recommende d’y aller avec une complexité progressive L’IA c’est pas donné https://techcrunch.com/2025/01/05/openai-is-losing-money-on-its-pricey-chatgpt-pro-plan-ceo-sam-altman-says/ OpenAI annonce que même avec des licenses à 200$/mois ils ne couvrent pas leurs couts associés… A quand l’explosion de la bulle IA ? Outillage Ghostty, un nouveau terminal pour Linux et macOS : https://ghostty.org/ Initié par Mitchell Hashimoto (hashicorp) Ghostty est un émulateur de terminal natif pour macOS et Linux. Il est écrit en Swift et utilise AppKit et SwiftUI sur macOS, et en Zig et utilise l’API GTK4 C sur Linux. Il utilise des composants d’interface utilisateur native et des raccourcis clavier et souris standard. Il prend en charge Quick Look, Force Touch et d’autres fonctionnalités spécifiques à macOS. Ghostty essaie de fournir un ensemble riche de fonctionnalités utiles pour un usage quotidien. Comment Pinterest utilise Honeycomb pour améliorer sa CI https://medium.com/pinterest-engineering/how-pinterest-leverages-honeycomb-to-enhance-ci-observability-and-improve-ci-build-stability–15eede563d75 Pinterest utilise Honeycomb pour améliorer l’observabilité de l’intégration continue (CI). Honeycomb permet à Pinterest de visualiser les métriques de build, d’analyser les tendances et de prendre des décisions basées sur les données. Honeycomb aide également Pinterest à identifier les causes potentielles des échecs de build et à rationaliser les tâches d’astreinte. Honeycomb peut également être utilisé pour suivre les métriq