A novel technique for selective NF-kappa B inhibition in Kupffer cells: contrary effects in fulminant hepatitis and ischaemia-reperfusion‪.‬ Medizin - Open Access LMU - Teil 15/22

    • Éducation

Background and aims: The transcription factor nuclear
factor kappa B (NF-kB) has risen as a promising target for
anti-inflammatory therapeutics. In the liver, however, NFkB
inhibition mediates both damaging and protective
effects. The outcome is deemed to depend on the liver
cell type addressed. Recent gene knock-out studies
focused on the role of NF-kB in hepatocytes, whereas the
role of NF-kB in Kupffer cells has not yet been
investigated in vivo. Here we present a novel approach,
which may be suitable for clinical application, to
selectively target NF-kB in Kupffer cells and analyse the
effects in experimental models of liver injury.
Methods: NF-kB inhibiting decoy oligodeoxynucleotides
were loaded upon gelatin nanoparticles (D-NPs) and their
in vivo distribution was determined by confocal microscopy.
Liver damage, NF-kB activity, cytokine levels and
apoptotic protein expression were evaluated after
lipopolysaccharide (LPS), D-galactosamine (GalN)/LPS, or
concanavalin A (ConA) challenge and partial warm
ischaemia and subsequent reperfusion, respectively.
Results: D-NPs were selectively taken up by Kupffer cells
and inhibited NF-kB activation. Inhibition of NF-kB in
Kupffer cells improved survival and reduced liver injury
after GalN/LPS as well as after ConA challenge. While
anti-apoptotic protein expression in liver tissue was not
reduced, pro-apoptotic players such as cJun N-terminal
kinase (JNK) were inhibited. In contrast, selective
inhibition of NF-kB augmented reperfusion injury.
Conclusions: NF-kB inhibiting decoy oligodeoxynucleotide-
loaded gelatin nanoparticles is a novel tool to
selectively inhibit NF-kB activation in Kupffer cells in vivo.
Thus, liver injury can be reduced in experimental fulminant
hepatitis, but increased at ischaemia–reperfusion.

Background and aims: The transcription factor nuclear
factor kappa B (NF-kB) has risen as a promising target for
anti-inflammatory therapeutics. In the liver, however, NFkB
inhibition mediates both damaging and protective
effects. The outcome is deemed to depend on the liver
cell type addressed. Recent gene knock-out studies
focused on the role of NF-kB in hepatocytes, whereas the
role of NF-kB in Kupffer cells has not yet been
investigated in vivo. Here we present a novel approach,
which may be suitable for clinical application, to
selectively target NF-kB in Kupffer cells and analyse the
effects in experimental models of liver injury.
Methods: NF-kB inhibiting decoy oligodeoxynucleotides
were loaded upon gelatin nanoparticles (D-NPs) and their
in vivo distribution was determined by confocal microscopy.
Liver damage, NF-kB activity, cytokine levels and
apoptotic protein expression were evaluated after
lipopolysaccharide (LPS), D-galactosamine (GalN)/LPS, or
concanavalin A (ConA) challenge and partial warm
ischaemia and subsequent reperfusion, respectively.
Results: D-NPs were selectively taken up by Kupffer cells
and inhibited NF-kB activation. Inhibition of NF-kB in
Kupffer cells improved survival and reduced liver injury
after GalN/LPS as well as after ConA challenge. While
anti-apoptotic protein expression in liver tissue was not
reduced, pro-apoptotic players such as cJun N-terminal
kinase (JNK) were inhibited. In contrast, selective
inhibition of NF-kB augmented reperfusion injury.
Conclusions: NF-kB inhibiting decoy oligodeoxynucleotide-
loaded gelatin nanoparticles is a novel tool to
selectively inhibit NF-kB activation in Kupffer cells in vivo.
Thus, liver injury can be reduced in experimental fulminant
hepatitis, but increased at ischaemia–reperfusion.

Classement des podcasts dans Éducation

Ma parole
France Culture
"Comment tu fais ?" by Laury Thilleman
Laury Thilleman
Change ma vie : Outils pour l'esprit
Clotilde Dusoulier
Ces questions que tout le monde se pose
Maud Ankaoua
T'as qui en Histoire ?
Stéphane Genêt
Choses à Savoir
Choses à Savoir

Plus par Ludwig-Maximilians-Universität München

Medizin - Open Access LMU - Teil 15/22
Ludwig-Maximilians-Universität München
Women Thinkers in Antiquity and the Middle Ages - SD
Peter Adamson
LMU Examinatorium Öffentliches Recht
Dr. Martin Heidebach
Jura - Open Access LMU - Teil 01/02
Ludwig-Maximilians-Universität München
John Lennox - Hat die Wissenschaft Gott begraben?
Professor John C. Lennox, University of Oxford
Signs in the flesh
Ludwig-Maximilians-Universität München