Latent Space: The AI Engineer Podcast

swyx + Alessio
Latent Space: The AI Engineer Podcast

The podcast by and for AI Engineers! In 2023, over 1 million visitors came to Latent Space to hear about news, papers and interviews in Software 3.0. We cover Foundation Models changing every domain in Code Generation, Multimodality, AI Agents, GPU Infra and more, directly from the founders, builders, and thinkers involved in pushing the cutting edge. Striving to give you both the definitive take on the Current Thing down to the first introduction to the tech you'll be using in the next 3 months! We break news and exclusive interviews from OpenAI, tiny (George Hotz), Databricks/MosaicML (Jon Frankle), Modular (Chris Lattner), Answer.ai (Jeremy Howard), et al. Full show notes always on https://latent.space www.latent.space

  1. -3 ДН.

    [Ride Home] Simon Willison: Things we learned about LLMs in 2024

    Due to overwhelming demand (>15x applications:slots), we are closing CFPs for AI Engineer Summit NYC today. Last call! Thanks, we’ll be reaching out to all shortly! The world’s top AI blogger and friend of every pod, Simon Willison, dropped a monster 2024 recap: Things we learned about LLMs in 2024. Brian of the excellent TechMeme Ride Home pinged us for a connection and a special crossover episode, our first in 2025. The target audience for this podcast is a tech-literate, but non-technical one. You can see Simon’s notes for AI Engineers in his World’s Fair Keynote. Timestamp * 00:00 Introduction and Guest Welcome * 01:06 State of AI in 2025 * 01:43 Advancements in AI Models * 03:59 Cost Efficiency in AI * 06:16 Challenges and Competition in AI * 17:15 AI Agents and Their Limitations * 26:12 Multimodal AI and Future Prospects * 35:29 Exploring Video Avatar Companies * 36:24 AI Influencers and Their Future * 37:12 Simplifying Content Creation with AI * 38:30 The Importance of Credibility in AI * 41:36 The Future of LLM User Interfaces * 48:58 Local LLMs: A Growing Interest * 01:07:22 AI Wearables: The Next Big Thing * 01:10:16 Wrapping Up and Final Thoughts Transcript [00:00:00] Introduction and Guest Welcome [00:00:00] Brian: Welcome to the first bonus episode of the Tech Meme Write Home for the year 2025. I'm your host as always, Brian McCullough. Listeners to the pod over the last year know that I have made a habit of quoting from Simon Willison when new stuff happens in AI from his blog. Simon has been, become a go to for many folks in terms of, you know, Analyzing things, criticizing things in the AI space. [00:00:33] Brian: I've wanted to talk to you for a long time, Simon. So thank you for coming on the show. No, it's a privilege to be here. And the person that made this connection happen is our friend Swyx, who has been on the show back, even going back to the, the Twitter Spaces days but also an AI guru in, in their own right Swyx, thanks for coming on the show also. [00:00:54] swyx (2): Thanks. I'm happy to be on and have been a regular listener, so just happy to [00:01:00] contribute as well. [00:01:00] Brian: And a good friend of the pod, as they say. Alright, let's go right into it. [00:01:06] State of AI in 2025 [00:01:06] Brian: Simon, I'm going to do the most unfair, broad question first, so let's get it out of the way. The year 2025. Broadly, what is the state of AI as we begin this year? [00:01:20] Brian: Whatever you want to say, I don't want to lead the witness. [00:01:22] Simon: Wow. So many things, right? I mean, the big thing is everything's got really good and fast and cheap. Like, that was the trend throughout all of 2024. The good models got so much cheaper, they got so much faster, they got multimodal, right? The image stuff isn't even a surprise anymore. [00:01:39] Simon: They're growing video, all of that kind of stuff. So that's all really exciting. [00:01:43] Advancements in AI Models [00:01:43] Simon: At the same time, they didn't get massively better than GPT 4, which was a bit of a surprise. So that's sort of one of the open questions is, are we going to see huge, but I kind of feel like that's a bit of a distraction because GPT 4, but way cheaper, much larger context lengths, and it [00:02:00] can do multimodal. [00:02:01] Simon: is better, right? That's a better model, even if it's not. [00:02:05] Brian: What people were expecting or hoping, maybe not expecting is not the right word, but hoping that we would see another step change, right? Right. From like GPT 2 to 3 to 4, we were expecting or hoping that maybe we were going to see the next evolution in that sort of, yeah. [00:02:21] Brian: We [00:02:21] Simon: did see that, but not in the way we expected. We thought the model was just going to get smarter, and instead we got. Massive drops in, drops in price. We got all of these new capabilities. You can talk to the things now, right? They can do simulated audio input, all of that kind of stuff. And so it's kind of, it's interesting to me that the models improved in all of these ways we weren't necessarily expecting. [00:02:43] Simon: I didn't know it would be able to do an impersonation of Santa Claus, like a, you know, Talked to it through my phone and show it what I was seeing by the end of 2024. But yeah, we didn't get that GPT 5 step. And that's one of the big open questions is, is that actually just around the corner and we'll have a bunch of GPT 5 class models drop in the [00:03:00] next few months? [00:03:00] Simon: Or is there a limit? [00:03:03] Brian: If you were a betting man and wanted to put money on it, do you expect to see a phase change, step change in 2025? [00:03:11] Simon: I don't particularly for that, like, the models, but smarter. I think all of the trends we're seeing right now are going to keep on going, especially the inference time compute, right? [00:03:21] Simon: The trick that O1 and O3 are doing, which means that you can solve harder problems, but they cost more and it churns away for longer. I think that's going to happen because that's already proven to work. I don't know. I don't know. Maybe there will be a step change to a GPT 5 level, but honestly, I'd be completely happy if we got what we've got right now. [00:03:41] Simon: But cheaper and faster and more capabilities and longer contexts and so forth. That would be thrilling to me. [00:03:46] Brian: Digging into what you've just said one of the things that, by the way, I hope to link in the show notes to Simon's year end post about what, what things we learned about LLMs in 2024. Look for that in the show notes. [00:03:59] Cost Efficiency in AI [00:03:59] Brian: One of the things that you [00:04:00] did say that you alluded to even right there was that in the last year, you felt like the GPT 4 barrier was broken, like IE. Other models, even open source ones are now regularly matching sort of the state of the art. [00:04:13] Simon: Well, it's interesting, right? So the GPT 4 barrier was a year ago, the best available model was OpenAI's GPT 4 and nobody else had even come close to it. [00:04:22] Simon: And they'd been at the, in the lead for like nine months, right? That thing came out in what, February, March of, of 2023. And for the rest of 2023, nobody else came close. And so at the start of last year, like a year ago, the big question was, Why has nobody beaten them yet? Like, what do they know that the rest of the industry doesn't know? [00:04:40] Simon: And today, that I've counted 18 organizations other than GPT 4 who've put out a model which clearly beats that GPT 4 from a year ago thing. Like, maybe they're not better than GPT 4. 0, but that's, that, that, that barrier got completely smashed. And yeah, a few of those I've run on my laptop, which is wild to me. [00:04:59] Simon: Like, [00:05:00] it was very, very wild. It felt very clear to me a year ago that if you want GPT 4, you need a rack of 40, 000 GPUs just to run the thing. And that turned out not to be true. Like the, the, this is that big trend from last year of the models getting more efficient, cheaper to run, just as capable with smaller weights and so forth. [00:05:20] Simon: And I ran another GPT 4 model on my laptop this morning, right? Microsoft 5. 4 just came out. And that, if you look at the benchmarks, it's definitely, it's up there with GPT 4. 0. It's probably not as good when you actually get into the vibes of the thing, but it, it runs on my, it's a 14 gigabyte download and I can run it on a MacBook Pro. [00:05:38] Simon: Like who saw that coming? The most exciting, like the close of the year on Christmas day, just a few weeks ago, was when DeepSeek dropped their DeepSeek v3 model on Hugging Face without even a readme file. It was just like a giant binary blob that I can't run on my laptop. It's too big. But in all of the benchmarks, it's now by far the best available [00:06:00] open, open weights model. [00:06:01] Simon: Like it's, it's, it's beating the, the metalamas and so forth. And that was trained for five and a half million dollars, which is a tenth of the price that people thought it costs to train these things. So everything's trending smaller and faster and more efficient. [00:06:15] Brian: Well, okay. [00:06:16] Challenges and Competition in AI [00:06:16] Brian: I, I kind of was going to get to that later, but let's, let's combine this with what I was going to ask you next, which is, you know, you're talking, you know, Also in the piece about the LLM prices crashing, which I've even seen in projects that I'm working on, but explain Explain that to a general audience, because we hear all the time that LLMs are eye wateringly expensive to run, but what we're suggesting, and we'll come back to the cheap Chinese LLM, but first of all, for the end user, what you're suggesting is that we're starting to see the cost come down sort of in the traditional technology way of Of costs coming down over time, [00:06:49] Simon: yes, but very aggressively. [00:06:51] Simon: I mean, my favorite thing, the example here is if you look at GPT-3, so open AI's g, PT three, which was the best, a developed model in [00:07:00] 2022 and through most of 20 2023. That, the models that we have today, the OpenAI models are a hundred times cheaper. So there was a 100x drop in price for OpenAI from their best available model, like two and a half years ago to today. [00:07:13] Simon: And [00:07:14] Brian: just to be clear, not to train the model, but for the use of tokens and things. Exactly, [00:07:20] Simon: for running prompts through them. And then When you look at the, the really, the top tier model providers right now, I think, are OpenAI, Anthropic, Google, and Meta. And there are a bunch of others that I could list there as well. [00:07:32] Simon: Mistral are very good. The, the DeepSeq and Quen models have got great. There's a whole bunch of providers serving really good models. But even if you just look a

    1 ч. 13 мин.
  2. -4 ДН.

    Beating Google at Search with Neural PageRank and $5M of H200s — with Will Bryk of Exa.ai

    Applications close Monday for the NYC AI Engineer Summit focusing on AI Leadership and Agent Engineering! If you applied, invites should be rolling out shortly. The search landscape is experiencing a fundamental shift. Google built a >$2T company with the “10 blue links” experience, driven by PageRank as the core innovation for ranking. This was a big improvement from the previous directory-based experiences of AltaVista and Yahoo. Almost 4 decades later, Google is now stuck in this links-based experience, especially from a business model perspective. This legacy architecture creates fundamental constraints: * Must return results in ~400 milliseconds * Required to maintain comprehensive web coverage * Tied to keyword-based matching algorithms * Cost structures optimized for traditional indexing As we move from the era of links to the era of answers, the way search works is changing. You’re not showing a user links, but the goal is to provide context to an LLM. This means moving from keyword based search to more semantic understanding of the content: The link prediction objective can be seen as like a neural PageRank because what you're doing is you're predicting the links people share... but it's more powerful than PageRank. It's strictly more powerful because people might refer to that Paul Graham fundraising essay in like a thousand different ways. And so our model learns all the different ways. All of this is now powered by a $5M cluster with 144 H200s: This architectural choice enables entirely new search capabilities: * Comprehensive result sets instead of approximations * Deep semantic understanding of queries * Ability to process complex, natural language requests As search becomes more complex, time to results becomes a variable: People think of searches as like, oh, it takes 500 milliseconds because we've been conditioned... But what if searches can take like a minute or 10 minutes or a whole day, what can you then do? Unlike traditional search engines' fixed-cost indexing, Exa employs a hybrid approach: * Front-loaded compute for indexing and embeddings * Variable inference costs based on query complexity * Mix of owned infrastructure ($5M H200 cluster) and cloud resources Exa sees a lot of competition from products like Perplexity and ChatGPT Search which layer AI on top of traditional search backends, but Exa is betting that true innovation requires rethinking search from the ground up. For example, the recently launched Websets, a way to turn searches into structured output in grid format, allowing you to create lists and databases out of web pages. The company raised a $17M Series A to build towards this mission, so keep an eye out for them in 2025. Chapters * 00:00:00 Introductions * 00:01:12 ExaAI's initial pitch and concept * 00:02:33 Will's background at SpaceX and Zoox * 00:03:45 Evolution of ExaAI (formerly Metaphor Systems) * 00:05:38 Exa's link prediction technology * 00:09:20 Meaning of the name "Exa" * 00:10:36 ExaAI's new product launch and capabilities * 00:13:33 Compute budgets and variable compute products * 00:14:43 Websets as a B2B offering * 00:19:28 How do you build a search engine? * 00:22:43 What is Neural PageRank? * 00:27:58 Exa use cases * 00:35:00 Auto-prompting * 00:38:42 Building agentic search * 00:44:19 Is o1 on the path to AGI? * 00:49:59 Company culture and nap pods * 00:54:52 Economics of AI search and the future of search technology Full YouTube Transcript Please like and subscribe! Show Notes * ExaAI * Web Search Product * Websets * Series A Announcement * Exa Nap Pods * Perplexity AI * Character.AI Transcript Alessio [00:00:00]: Hey, everyone. Welcome to the Latent Space podcast. This is Alessio, partner and CTO at Decibel Partners, and I'm joined by my co-host Swyx, founder of Smol.ai. Swyx [00:00:10]: Hey, and today we're in the studio with my good friend and former landlord, Will Bryk. Roommate. How you doing? Will, you're now CEO co-founder of ExaAI, used to be Metaphor Systems. What's your background, your story? Will [00:00:30]: Yeah, sure. So, yeah, I'm CEO of Exa. I've been doing it for three years. I guess I've always been interested in search, whether I knew it or not. Like, since I was a kid, I've always been interested in, like, high-quality information. And, like, you know, even in high school, wanted to improve the way we get information from news. And then in college, built a mini search engine. And then with Exa, like, you know, it's kind of like fulfilling the dream of actually being able to solve all the information needs I wanted as a kid. Yeah, I guess. I would say my entire life has kind of been rotating around this problem, which is pretty cool. Yeah. Swyx [00:00:50]: What'd you enter YC with? Will [00:00:53]: We entered YC with, uh, we are better than Google. Like, Google 2.0. Swyx [00:01:12]: What makes you say that? Like, that's so audacious to come out of the box with. Will [00:01:16]: Yeah, okay, so you have to remember the time. This was summer 2021. And, uh, GPT-3 had come out. Like, here was this magical thing that you could talk to, you could enter a whole paragraph, and it understands what you mean, understands the subtlety of your language. And then there was Google. Uh, which felt like it hadn't changed in a decade, uh, because it really hadn't. And it, like, you would give it a simple query, like, I don't know, uh, shirts without stripes, and it would give you a bunch of results for the shirts with stripes. And so, like, Google could barely understand you, and GBD3 could. And the theory was, what if you could make a search engine that actually understood you? What if you could apply the insights from LLMs to a search engine? And it's really been the same idea ever since. And we're actually a lot closer now, uh, to doing that. Yeah. Alessio [00:01:55]: Did you have any trouble making people believe? Obviously, there's the same element. I mean, YC overlap, was YC pretty AI forward, even 2021, or? Will [00:02:03]: It's nothing like it is today. But, um, uh, there were a few AI companies, but, uh, we were definitely, like, bold. And I think people, VCs generally like boldness, and we definitely had some AI background, and we had a working demo. So there was evidence that we could build something that was going to work. But yeah, I think, like, the fundamentals were there. I think people at the time were talking about how, you know, Google was failing in a lot of ways. And so there was a bit of conversation about it, but AI was not a big, big thing at the time. Yeah. Yeah. Alessio [00:02:33]: Before we jump into Exa, any fun background stories? I know you interned at SpaceX, any Elon, uh, stories? I know you were at Zoox as well, you know, kind of like robotics at Harvard. Any stuff that you saw early that you thought was going to get solved that maybe it's not solved today? Will [00:02:48]: Oh yeah. I mean, lots of things like that. Like, uh, I never really learned how to drive because I believed Elon that self-driving cars would happen. It did happen. And I take them every night to get home. But it took like 10 more years than I thought. Do you still not know how to drive? I know how to drive now. I learned it like two years ago. That would have been great to like, just, you know, Yeah, yeah, yeah. You know? Um, I was obsessed with Elon. Yeah. I mean, I worked at SpaceX because I really just wanted to work at one of his companies. And I remember they had a rule, like interns cannot touch Elon. And, um, that rule actually influenced my actions. Swyx [00:03:18]: Is it, can Elon touch interns? Ooh, like physically? Will [00:03:22]: Or like talk? Physically, physically, yeah, yeah, yeah, yeah. Okay, interesting. He's changed a lot, but, um, I mean, his companies are amazing. Um, Swyx [00:03:28]: What if you beat him at Diablo 2, Diablo 4, you know, like, Ah, maybe. Alessio [00:03:34]: I want to jump into, I know there's a lot of backstory used to be called metaphor system. So, um, and it, you've always been kind of like a prominent company, maybe at least RAI circles in the NSF. Swyx [00:03:45]: I'm actually curious how Metaphor got its initial aura. You launched with like, very little. We launched very little. Like there was, there was this like big splash image of like, this is Aurora or something. Yeah. Right. And then I was like, okay, what this thing, like the vibes are good, but I don't know what it is. And I think, I think it was much more sort of maybe consumer facing than what you are today. Would you say that's true? Will [00:04:06]: No, it's always been about building a better search algorithm, like search, like, just like the vision has always been perfect search. And if you do that, uh, we will figure out the downstream use cases later. It started on this fundamental belief that you could have perfect search over the web and we could talk about what that means. And like the initial thing we released was really just like our first search engine, like trying to get it out there. Kind of like, you know, an open source. So when OpenAI released, uh, ChachBt, like they didn't, I don't know how, how much of a game plan they had. They kind of just wanted to get something out there. Swyx [00:04:33]: Spooky research preview. Will [00:04:34]: Yeah, exactly. And it kind of morphed from a research company to a product company at that point. And I think similarly for us, like we were research, we started as a research endeavor with a, you know, clear eyes that like, if we succeed, it will be a massive business to make out of it. And that's kind of basically what happened. I think there are actually a lot of parallels to, of w between Exa and OpenAI. I often say we're the OpenAI of search. Um, because. Because we're a research company, we're a research startup that does like fundamental research into, uh, making like AGI for search in a, in a way. Uh, and then we have all these like, uh, business products that come out of

    56 мин.
  3. 4 ЯНВ.

    AI Engineering for Art — with comfyanonymous, of ComfyUI

    Applications for the NYC AI Engineer Summit, focused on Agents at Work, are open! When we first started Latent Space, in the lightning round we’d always ask guests: “What’s your favorite AI product?”. The majority would say Midjourney. The simple UI of prompt → very aesthetic image turned it into a $300M+ ARR bootstrapped business as it rode the first wave of AI image generation. In open source land, StableDiffusion was congregating around AUTOMATIC1111 as the de-facto web UI. Unlike Midjourney, which offered some flags but was mostly prompt-driven, A1111 let users play with a lot more parameters, supported additional modalities like img2img, and allowed users to load in custom models. If you’re interested in some of the SD history, you can look at our episodes with Lexica, Replicate, and Playground. One of the people involved with that community was comfyanonymous, who was also part of the Stability team in 2023, decided to build an alternative called ComfyUI, now one of the fastest growing open source projects in generative images, and is now the preferred partner for folks like Black Forest Labs’s Flux Tools on Day 1. The idea behind it was simple: “Everyone is trying to make easy to use interfaces. Let me try to make a powerful interface that's not easy to use.” Unlike its predecessors, ComfyUI does not have an input text box. Everything is based around the idea of a node: there’s a text input node, a CLIP node, a checkpoint loader node, a KSampler node, a VAE node, etc. While daunting for simple image generation, the tool is amazing for more complex workflows since you can break down every step of the process, and then chain many of them together rather than manually switching between tools. You can also re-start execution halfway instead of from the beginning, which can save a lot of time when using larger models. To give you an idea of some of the new use cases that this type of UI enables: * Sketch something → Generate an image with SD from sketch → feed it into SD Video to animate * Generate an image of an object → Turn into a 3D asset → Feed into interactive experiences * Input audio → Generate audio-reactive videos Their Examples page also includes some of the more common use cases like AnimateDiff, etc. They recently launched the Comfy Registry, an online library of different nodes that users can pull from rather than having to build everything from scratch. The project has >60,000 Github stars, and as the community grows, some of the projects that people build have gotten quite complex: The most interesting thing about Comfy is that it’s not a UI, it’s a runtime. You can build full applications on top of image models simply by using Comfy. You can expose Comfy workflows as an endpoint and chain them together just like you chain a single node. We’re seeing the rise of AI Engineering applied to art. Major Tom’s ComfyUI Resources from the Latent Space Discord Major shoutouts to Major Tom on the LS Discord who is a image generation expert, who offered these pointers: * “best thing about comfy is the fact it supports almost immediately every new thing that comes out - unlike A1111 or forge, which still don't support flux cnet for instance. It will be perfect tool when conflicting nodes will be resolved” * AP Workflows from Alessandro Perili are a nice example of an all-in-one train-evaluate-generate system built atop Comfy * ComfyUI YouTubers to learn from: * @sebastiankamph * @NerdyRodent * @OlivioSarikas * @sedetweiler * @pixaroma * ComfyUI Nodes to check out: * https://github.com/kijai/ComfyUI-IC-Light * https://github.com/MrForExample/ComfyUI-3D-Pack * https://github.com/PowerHouseMan/ComfyUI-AdvancedLivePortrait * https://github.com/pydn/ComfyUI-to-Python-Extension * https://github.com/THtianhao/ComfyUI-Portrait-Maker * https://github.com/ssitu/ComfyUI_NestedNodeBuilder * https://github.com/longgui0318/comfyui-magic-clothing * https://github.com/atmaranto/ComfyUI-SaveAsScript * https://github.com/ZHO-ZHO-ZHO/ComfyUI-InstantID * https://github.com/AIFSH/ComfyUI-FishSpeech * https://github.com/coolzilj/ComfyUI-Photopea * https://github.com/lks-ai/anynode * Sarav: https://www.youtube.com/@mickmumpitz/videos ( applied stuff ) * Sarav: https://www.youtube.com/@latentvision (technical, but infrequent) * look for comfyui node for https://github.com/magic-quill/MagicQuill * “Comfy for Video” resources * Kijai (https://github.com/kijai) pushing out support for Mochi, CogVideoX, AnimateDif, LivePortrait etc * Comfyui node support like LTX https://github.com/Lightricks/ComfyUI-LTXVideo , and HunyuanVideo * FloraFauna AI and Krea.ai * Communities: https://www.reddit.com/r/StableDiffusion/, https://www.reddit.com/r/comfyui/ Full YouTube Episode As usual, you can find the full video episode on our YouTube (and don’t forget to like and subscribe!) Timestamps * 00:00:04 Introduction of hosts and anonymous guest * 00:00:35 Origins of Comfy UI and early Stable Diffusion landscape * 00:02:58 Comfy's background and development of high-res fix * 00:05:37 Area conditioning and compositing in image generation * 00:07:20 Discussion on different AI image models (SD, Flux, etc.) * 00:11:10 Closed source model APIs and community discussions on SD versions * 00:14:41 LoRAs and textual inversion in image generation * 00:18:43 Evaluation methods in the Comfy community * 00:20:05 CLIP models and text encoders in image generation * 00:23:05 Prompt weighting and negative prompting * 00:26:22 Comfy UI's unique features and design choices * 00:31:00 Memory management in Comfy UI * 00:33:50 GPU market share and compatibility issues * 00:35:40 Node design and parameter settings in Comfy UI * 00:38:44 Custom nodes and community contributions * 00:41:40 Video generation models and capabilities * 00:44:47 Comfy UI's development timeline and rise to popularity * 00:48:13 Current state of Comfy UI team and future plans * 00:50:11 Discussion on other Comfy startups and potential text generation support Transcript Alessio [00:00:04]: Hey everyone, welcome to the Latent Space podcast. This is Alessio, partner and CTO at Decibel Partners, and I'm joined by my co-host Swyx, founder of Small AI. swyx [00:00:12]: Hey everyone, we are in the Chroma Studio again, but with our first ever anonymous guest, Comfy Anonymous, welcome. Comfy [00:00:19]: Hello. swyx [00:00:21]: I feel like that's your full name, you just go by Comfy, right? Comfy [00:00:24]: Yeah, well, a lot of people just call me Comfy, even when they know my real name. Hey, Comfy. Alessio [00:00:32]: Swyx is the same. You know, not a lot of people call you Shawn. swyx [00:00:35]: Yeah, you have a professional name, right, that people know you by, and then you have a legal name. Yeah, it's fine. How do I phrase this? I think people who are in the know, know that Comfy is like the tool for image generation and now other multimodality stuff. I would say that when I first got started with Stable Diffusion, the star of the show was Automatic 111, right? And I actually looked back at my notes from 2022-ish, like Comfy was already getting started back then, but it was kind of like the up and comer, and your main feature was the flowchart. Can you just kind of rewind to that moment, that year and like, you know, how you looked at the landscape there and decided to start Comfy? Comfy [00:01:10]: Yeah, I discovered Stable Diffusion in 2022, in October 2022. And, well, I kind of started playing around with it. Yes, I, and back then I was using Automatic, which was what everyone was using back then. And so I started with that because I had, it was when I started, I had no idea like how Diffusion works. I didn't know how Diffusion models work, how any of this works, so. swyx [00:01:36]: Oh, yeah. What was your prior background as an engineer? Comfy [00:01:39]: Just a software engineer. Yeah. Boring software engineer. swyx [00:01:44]: But like any, any image stuff, any orchestration, distributed systems, GPUs? Comfy [00:01:49]: No, I was doing basically nothing interesting. Crud, web development? Yeah, a lot of web development, just, yeah, some basic, maybe some basic like automation stuff. Okay. Just. Yeah, no, like, no big companies or anything. swyx [00:02:08]: Yeah, but like already some interest in automations, probably a lot of Python. Comfy [00:02:12]: Yeah, yeah, of course, Python. But I wasn't actually used to like the Node graph interface before I started Comfy UI. It was just, I just thought it was like, oh, like, what's the best way to represent the Diffusion process in the user interface? And then like, oh, well. Well, like, naturally, oh, this is the best way I've found. And this was like with the Node interface. So how I got started was, yeah, so basic October 2022, just like I hadn't written a line of PyTorch before that. So it's completely new. What happened was I kind of got addicted to generating images. Alessio [00:02:58]: As we all did. Yeah. Comfy [00:03:00]: And then I started. I started experimenting with like the high-res fixed in auto, which was for those that don't know, the high-res fix is just since the Diffusion models back then could only generate that low-resolution. So what you would do, you would generate low-resolution image, then upscale, then refine it again. And that was kind of the hack to generate high-resolution images. I really liked generating. Like higher resolution images. So I was experimenting with that. And so I modified the code a bit. Okay. What happens if I, if I use different samplers on the second pass, I was edited the code of auto. So what happens if I use a different sampler? What happens if I use a different, like a different settings, different number of steps? And because back then the. The high-res fix was very basic, just, so. Yeah. swyx [00:04:05]: Now there's a whole library of just, uh, the upsamplers. Comfy [00:04:08]: I think, I think they added a bunch of, uh, of options to the h

    55 мин.
  4. Latent.Space 2024 Year in Review

    31.12.2024

    Latent.Space 2024 Year in Review

    Applications for the 2025 AI Engineer Summit are up, and you can save the date for AIE Singapore in April and AIE World’s Fair 2025 in June. Happy new year, and thanks for 100 great episodes! Please let us know what you want to see/hear for the next 100! Full YouTube Episode with Slides/Charts Like and subscribe and hit that bell to get notifs! Timestamps * 00:00 Welcome to the 100th Episode! * 00:19 Reflecting on the Journey * 00:47 AI Engineering: The Rise and Impact * 03:15 Latent Space Live and AI Conferences * 09:44 The Competitive AI Landscape * 21:45 Synthetic Data and Future Trends * 35:53 Creative Writing with AI * 36:12 Legal and Ethical Issues in AI * 38:18 The Data War: GPU Poor vs. GPU Rich * 39:12 The Rise of GPU Ultra Rich * 40:47 Emerging Trends in AI Models * 45:31 The Multi-Modality War * 01:05:31 The Future of AI Benchmarks * 01:13:17 Pionote and Frontier Models * 01:13:47 Niche Models and Base Models * 01:14:30 State Space Models and RWKB * 01:15:48 Inference Race and Price Wars * 01:22:16 Major AI Themes of the Year * 01:22:48 AI Rewind: January to March * 01:26:42 AI Rewind: April to June * 01:33:12 AI Rewind: July to September * 01:34:59 AI Rewind: October to December * 01:39:53 Year-End Reflections and Predictions Transcript [00:00:00] Welcome to the 100th Episode! [00:00:00] Alessio: Hey everyone, welcome to the Latent Space Podcast. This is Alessio, partner and CTO at Decibel Partners, and I'm joined by my co host Swyx for the 100th time today. [00:00:12] swyx: Yay, um, and we're so glad that, yeah, you know, everyone has, uh, followed us in this journey. How do you feel about it? 100 episodes. [00:00:19] Alessio: Yeah, I know. [00:00:19] Reflecting on the Journey [00:00:19] Alessio: Almost two years that we've been doing this. We've had four different studios. Uh, we've had a lot of changes. You know, we used to do this lightning round. When we first started that we didn't like, and we tried to change the question. The answer [00:00:32] swyx: was cursor and perplexity. [00:00:34] Alessio: Yeah, I love mid journey. It's like, do you really not like anything else? [00:00:38] Alessio: Like what's, what's the unique thing? And I think, yeah, we, we've also had a lot more research driven content. You know, we had like 3DAO, we had, you know. Jeremy Howard, we had more folks like that. [00:00:47] AI Engineering: The Rise and Impact [00:00:47] Alessio: I think we want to do more of that too in the new year, like having, uh, some of the Gemini folks, both on the research and the applied side. [00:00:54] Alessio: Yeah, but it's been a ton of fun. I think we both started, I wouldn't say as a joke, we were kind of like, Oh, we [00:01:00] should do a podcast. And I think we kind of caught the right wave, obviously. And I think your rise of the AI engineer posts just kind of get people. Sombra to congregate, and then the AI engineer summit. [00:01:11] Alessio: And that's why when I look at our growth chart, it's kind of like a proxy for like the AI engineering industry as a whole, which is almost like, like, even if we don't do that much, we keep growing just because there's so many more AI engineers. So did you expect that growth or did you expect that would take longer for like the AI engineer thing to kind of like become, you know, everybody talks about it today. [00:01:32] swyx: So, the sign of that, that we have won is that Gartner puts it at the top of the hype curve right now. So Gartner has called the peak in AI engineering. I did not expect, um, to what level. I knew that I was correct when I called it because I did like two months of work going into that. But I didn't know, You know, how quickly it could happen, and obviously there's a chance that I could be wrong. [00:01:52] swyx: But I think, like, most people have come around to that concept. Hacker News hates it, which is a good sign. But there's enough people that have defined it, you know, GitHub, when [00:02:00] they launched GitHub Models, which is the Hugging Face clone, they put AI engineers in the banner, like, above the fold, like, in big So I think it's like kind of arrived as a meaningful and useful definition. [00:02:12] swyx: I think people are trying to figure out where the boundaries are. I think that was a lot of the quote unquote drama that happens behind the scenes at the World's Fair in June. Because I think there's a lot of doubt or questions about where ML engineering stops and AI engineering starts. That's a useful debate to be had. [00:02:29] swyx: In some sense, I actually anticipated that as well. So I intentionally did not. Put a firm definition there because most of the successful definitions are necessarily underspecified and it's actually useful to have different perspectives and you don't have to specify everything from the outset. [00:02:45] Alessio: Yeah, I was at um, AWS reInvent and the line to get into like the AI engineering talk, so to speak, which is, you know, applied AI and whatnot was like, there are like hundreds of people just in line to go in. [00:02:56] Alessio: I think that's kind of what enabled me. People, right? Which is what [00:03:00] you kind of talked about. It's like, Hey, look, you don't actually need a PhD, just, yeah, just use the model. And then maybe we'll talk about some of the blind spots that you get as an engineer with the earlier posts that we also had on on the sub stack. [00:03:11] Alessio: But yeah, it's been a heck of a heck of a two years. [00:03:14] swyx: Yeah. [00:03:15] Latent Space Live and AI Conferences [00:03:15] swyx: You know, I was, I was trying to view the conference as like, so NeurIPS is I think like 16, 17, 000 people. And the Latent Space Live event that we held there was 950 signups. I think. The AI world, the ML world is still very much research heavy. And that's as it should be because ML is very much in a research phase. [00:03:34] swyx: But as we move this entire field into production, I think that ratio inverts into becoming more engineering heavy. So at least I think engineering should be on the same level, even if it's never as prestigious, like it'll always be low status because at the end of the day, you're manipulating APIs or whatever. [00:03:51] swyx: But Yeah, wrapping GPTs, but there's going to be an increasing stack and an art to doing these, these things well. And I, you know, I [00:04:00] think that's what we're focusing on for the podcast, the conference and basically everything I do seems to make sense. And I think we'll, we'll talk about the trends here that apply. [00:04:09] swyx: It's, it's just very strange. So, like, there's a mix of, like, keeping on top of research while not being a researcher and then putting that research into production. So, like, people always ask me, like, why are you covering Neuralibs? Like, this is a ML research conference and I'm like, well, yeah, I mean, we're not going to, to like, understand everything Or reproduce every single paper, but the stuff that is being found here is going to make it through into production at some point, you hope. [00:04:32] swyx: And then actually like when I talk to the researchers, they actually get very excited because they're like, oh, you guys are actually caring about how this goes into production and that's what they really really want. The measure of success is previously just peer review, right? Getting 7s and 8s on their um, Academic review conferences and stuff like citations is one metric, but money is a better metric. [00:04:51] Alessio: Money is a better metric. Yeah, and there were about 2200 people on the live stream or something like that. Yeah, yeah. Hundred on the live stream. So [00:05:00] I try my best to moderate, but it was a lot spicier in person with Jonathan and, and Dylan. Yeah, that it was in the chat on YouTube. [00:05:06] swyx: I would say that I actually also created. [00:05:09] swyx: Layen Space Live in order to address flaws that are perceived in academic conferences. This is not NeurIPS specific, it's ICML, NeurIPS. Basically, it's very sort of oriented towards the PhD student, uh, market, job market, right? Like literally all, basically everyone's there to advertise their research and skills and get jobs. [00:05:28] swyx: And then obviously all the, the companies go there to hire them. And I think that's great for the individual researchers, but for people going there to get info is not great because you have to read between the lines, bring a ton of context in order to understand every single paper. So what is missing is effectively what I ended up doing, which is domain by domain, go through and recap the best of the year. [00:05:48] swyx: Survey the field. And there are, like NeurIPS had a, uh, I think ICML had a like a position paper track, NeurIPS added a benchmarks, uh, datasets track. These are ways in which to address that [00:06:00] issue. Uh, there's always workshops as well. Every, every conference has, you know, a last day of workshops and stuff that provide more of an overview. [00:06:06] swyx: But they're not specifically prompted to do so. And I think really, uh, Organizing a conference is just about getting good speakers and giving them the correct prompts. And then they will just go and do that thing and they do a very good job of it. So I think Sarah did a fantastic job with the startups prompt. [00:06:21] swyx: I can't list everybody, but we did best of 2024 in startups, vision, open models. Post transformers, synthetic data, small models, and agents. And then the last one was the, uh, and then we also did a quick one on reasoning with Nathan Lambert. And then the last one, obviously, was the debate that people were very hyped about. [00:06:39] swyx: It was very awkward. And I'm really, really thankful for John Franco, basically, who stepped up to challenge Dylan. Because Dylan was like, yeah, I'll do it. But He was pro scaling. And I think everyone who is like in AI is pro scaling, right? So you need someb

    1 ч. 52 мин.
  5. 25.12.2024

    2024 in Agents [LS Live! @ NeurIPS 2024]

    Happy holidays! We’ll be sharing snippets from Latent Space LIVE! through the break bringing you the best of 2024! We want to express our deepest appreciation to event sponsors AWS, Daylight Computer, Thoth.ai, StrongCompute, Notable Capital, and most of all all our LS supporters who helped fund the gorgeous venue and A/V production! For NeurIPS last year we did our standard conference podcast coverage interviewing selected papers (that we have now also done for ICLR and ICML), however we felt that we could be doing more to help AI Engineers 1) get more industry-relevant content, and 2) recap 2024 year in review from experts. As a result, we organized the first Latent Space LIVE!, our first in person miniconference, at NeurIPS 2024 in Vancouver. Our next keynote covers The State of LLM Agents, with the triumphant return of Professor Graham Neubig’s return to the pod (his ICLR episode here!). OpenDevin is now a startup known as AllHands! The renamed OpenHands has done extremely well this year, as they end the year sitting comfortably at number 1 on the hardest SWE-Bench Full leaderboard at 29%, though on the smaller SWE-Bench Verified, they are at 53%, behind Amazon Q, devlo, and OpenAI's self reported o3 results at 71.7%. Many are saying that 2025 is going to be the year of agents, with OpenAI, DeepMind and Anthropic setting their sights on consumer and coding agents, vision based computer-using agents and multi agent systems. There has been so much progress on the practical reliability and applications of agents in all domains, from the huge launch of Cognition AI's Devin this year, to the sleeper hit of Cursor Composer and Codeium's Windsurf Cascade in the IDE arena, to the explosive revenue growth of Stackblitz's Bolt, Lovable, and Vercel's v0, and the unicorn rounds and high profile movements of customer support agents like Sierra (now worth $4 billion) and search agents like Perplexity (now worth $9 billion). We wanted to take a little step back to understand the most notable papers of the year in Agents, and Graham indulged with his list of 8 perennial problems in building agents in 2024. Must-Read Papers for the 8 Problems of Agents * The agent-computer interface: CodeAct: Executable Code Actions Elicit Better LLM Agents. Minimial viable tools: Execution Sandbox, File Editor, Web Browsing * The human-agent interface: Chat UI, GitHub Plugin, Remote runtime, …? * Choosing an LLM: See Evaluation of LLMs as Coding Agents on SWE-Bench at 30x - must understand instructions, tools, code, environment, error recovery * Planning: Single Agent Systems vs Multi Agent (CoAct: A Global-Local Hierarchy for Autonomous Agent Collaboration) - Explicit vs Implicit, Curated vs Generated * Reusable common workflows: SteP: Stacked LLM Policies for Web Actions and Agent Workflow Memory - Manual prompting vs Learning from Experience * Exploration: Agentless: Demystifying LLM-based Software Engineering Agents and BAGEL: Bootstrapping Agents by Guiding Exploration with Language * Search: Tree Search for Language Model Agents - explore paths and rewind * Evaluation: Fast Sanity Checks (miniWoB and Aider) and Highly Realistic (WebArena, SWE-Bench) and SWE-Gym: An Open Environment for Training Software Engineering Agents & Verifiers Full Talk on YouTube Please like and subscribe! Timestamps * 00:00 Welcome to Latent Space Live at NeurIPS 2024 * 00:29 State of LLM Agents in 2024 * 02:20 Professor Graham Newbig's Insights on Agents * 03:57 Live Demo: Coding Agents in Action * 08:20 Designing Effective Agents * 14:13 Choosing the Right Language Model for Agents * 16:24 Planning and Workflow for Agents * 22:21 Evaluation and Future Predictions for Agents * 25:31 Future of Agent Development * 25:56 Human-Agent Interaction Challenges * 26:48 Expanding Agent Use Beyond Programming * 27:25 Redesigning Systems for Agent Efficiency * 28:03 Accelerating Progress with Agent Technology * 28:28 Call to Action for Open Source Contributions * 30:36 Q&A: Agent Performance and Benchmarks * 33:23 Q&A: Web Agents and Interaction Methods * 37:16 Q&A: Agent Architectures and Improvements * 43:09 Q&A: Self-Improving Agents and Authentication * 47:31 Live Demonstration and Closing Remarks Transcript [00:00:29] State of LLM Agents in 2024 [00:00:29] Speaker 9: Our next keynote covers the state of LLM agents. With the triumphant return of Professor Graham Newbig of CMU and OpenDevon, now a startup known as AllHands. The renamed OpenHands has done extremely well this year, as they end the year sitting comfortably at number one on the hardest SWE Benchful leaderboard at 29%. [00:00:53] Speaker 9: Though, on the smaller SWE bench verified, they are at 53 percent behind Amazon Q [00:01:00] Devlo and OpenAI's self reported O3 results at 71. 7%. Many are saying that 2025 is going to be the year of agents, with OpenAI, DeepMind, and Anthropic setting their sights on consumer and coding agents. Vision based computer using agents and multi agent systems. [00:01:22] Speaker 9: There has been so much progress on the practical reliability and applications of agents in all domains, from the huge launch of Cognition AI's Devon this year, to the sleeper hit of Cursor Composer and recent guest Codium's Windsurf Cascade in the IDE arena. To the explosive revenue growth of recent guests StackBlitz's Bolt, Lovable, and Vercel's vZero. [00:01:44] Speaker 9: And the unicorn rounds and high profile movements of customer support agents like Sierra, now worth 4 billion, and search agents like Perplexity, now worth 9 billion. We wanted to take a little step back to understand the most notable papers of the year in [00:02:00] agents, and Graham indulged with his list of eight perennial problems in building agents. [00:02:06] Speaker 9: As always, don't forget to check our show notes for all the selected best papers of 2024, and for the YouTube link to their talk. Graham's slides were especially popular online, and we are honoured to have him. Watch out and take care! [00:02:20] Professor Graham Newbig's Insights on Agents [00:02:20] Speaker: Okay hi everyone. So I was given the task of talking about agents in 2024, and this is An impossible task because there are so many agents, so many agents in 2024. So this is going to be strongly covered by like my personal experience and what I think is interesting and important, but I think it's an important topic. [00:02:41] Speaker: So let's go ahead. So the first thing I'd like to think about is let's say I gave you you know, a highly competent human, some tools. Let's say I gave you a web browser and a terminal or a file system. And the ability to [00:03:00] edit text or code. What could you do with that? Everything. Yeah. [00:03:07] Speaker: Probably a lot of things. This is like 99 percent of my, you know, daily daily life, I guess. When I'm, when I'm working. So, I think this is a pretty powerful tool set, and I am trying to do, and what I think some other people are trying to do, is come up with agents that are able to, you know, manipulate these things. [00:03:26] Speaker: Web browsing, coding, running code in successful ways. So there was a little bit about my profile. I'm a professor at CMU, chief scientist at All Hands AI, building open source coding agents. I'm maintainer of OpenHands, which is an open source coding agent framework. And I'm also a software developer and I, I like doing lots of coding and, and, you know, shipping new features and stuff like this. [00:03:51] Speaker: So building agents that help me to do this, you know, is kind of an interesting thing, very close to me. [00:03:57] Live Demo: Coding Agents in Action [00:03:57] Speaker: So the first thing I'd like to do is I'd like to try [00:04:00] some things that I haven't actually tried before. If anybody has, you know, tried to give a live demo, you know, this is, you know very, very scary whenever you do it and it might not work. [00:04:09] Speaker: So it might not work this time either. But I want to show you like three things that I typically do with coding agents in my everyday work. I use coding agents maybe five to 10 times a day to help me solve my own problems. And so this is a first one. This is a data science task. Which says I want to create scatter plots that show the increase of the SWE bench score over time. [00:04:34] Speaker: And so I, I wrote a kind of concrete prompt about this. Agents work better with like somewhat concrete prompts. And I'm gonna throw this into open hands and let it work. And I'll, I'll go back to that in a second. Another thing that I do is I create new software. And I, I've been using a [00:05:00] service a particular service. [00:05:01] Speaker: I won't name it for sending emails and I'm not very happy with it. So I want to switch over to this new service called resend. com, which makes it easier to send emails. And so I'm going to ask it to read the docs for the resend. com API and come up with a script that allows me to send emails. The input to the script should be a CSV file and the subject and body should be provided in Jinja2 templates. [00:05:24] Speaker: So I'll start another agent and and try to get it to do that for me. [00:05:35] Speaker: And let's go with the last one. The last one I do is. This is improving existing software and in order, you know, once you write software, you usually don't throw it away. You go in and, like, actually improve it iteratively. This software that I have is something I created without writing any code. [00:05:52] Speaker: It's basically software to monitor how much our our agents are contributing to the OpenHance repository. [00:06:00] And on the, let me make that a little bit bigger, on the left side, I have the number of issues where it like sent a pull request. I have the number of issues where it like sent a pull request, whether it was merged in purple, closed in red, or is still open in green. And so these are like, you know, it's helping us monitor, but one th

    49 мин.
  6. 24.12.2024

    2024 in Synthetic Data and Smol Models [LS Live @ NeurIPS]

    Happy holidays! We’ll be sharing snippets from Latent Space LIVE! through the break bringing you the best of 2024! We want to express our deepest appreciation to event sponsors AWS, Daylight Computer, Thoth.ai, StrongCompute, Notable Capital, and most of all all our LS supporters who helped fund the gorgeous venue and A/V production! For NeurIPS last year we did our standard conference podcast coverage interviewing selected papers (that we have now also done for ICLR and ICML), however we felt that we could be doing more to help AI Engineers 1) get more industry-relevant content, and 2) recap 2024 year in review from experts. As a result, we organized the first Latent Space LIVE!, our first in person miniconference, at NeurIPS 2024 in Vancouver. Today, we’re proud to share Loubna’s highly anticipated talk (slides here)! Synthetic Data We called out the Synthetic Data debate at last year’s NeurIPS, and no surprise that 2024 was dominated by the rise of synthetic data everywhere: * Apple’s Rephrasing the Web, Microsoft’s Phi 2-4 and Orca/AgentInstruct, Tencent’s Billion Persona dataset, DCLM, and HuggingFace’s FineWeb-Edu, and Loubna’s own Cosmopedia extended the ideas of synthetic textbook and agent generation to improve raw web scrape dataset quality * This year we also talked to the IDEFICS/OBELICS team at HuggingFace who released WebSight this year, the first work on code-vs-images synthetic data. * We called Llama 3.1 the Synthetic Data Model for its extensive use (and documentation!) of synthetic data in its pipeline, as well as its permissive license. * Nemotron CC and Nemotron-4-340B also made a big splash this year for how they used 20k items of human data to synthesize over 98% of the data used for SFT/PFT. * Cohere introduced Multilingual Arbitrage: Optimizing Data Pools to Accelerate Multilingual Progress observing gains of up to 56.5% improvement in win rates comparing multiple teachers vs the single best teacher model * In post training, AI2’s Tülu3 (discussed by Luca in our Open Models talk) and Loubna’s Smol Talk were also notable open releases this year. This comes in the face of a lot of scrutiny and criticism, with Scale AI as one of the leading voices publishing AI models collapse when trained on recursively generated data in Nature magazine bringing mainstream concerns to the potential downsides of poor quality syndata: Part of the concerns we highlighted last year on low-background tokens are coming to bear: ChatGPT contaminated data is spiking in every possible metric: But perhaps, if Sakana’s AI Scientist pans out this year, we will have mostly-AI AI researchers publishing AI research anyway so do we really care as long as the ideas can be verified to be correct? Smol Models Meta surprised many folks this year by not just aggressively updating Llama 3 and adding multimodality, but also adding a new series of “small” 1B and 3B “on device” models this year, even working on quantized numerics collaborations with Qualcomm, Mediatek, and Arm. It is near unbelievable that a 1B model today can qualitatively match a 13B model of last year: and the minimum size to hit a given MMLU bar has come down roughly 10x in the last year. We have been tracking this proxied by Lmsys Elo and inference price: The key reads this year are: * MobileLLM: Optimizing Sub-billion Parameter Language Models for On-Device Use Cases * Apple Intelligence Foundation Language Models * Hymba: A Hybrid-head Architecture for Small Language Models * Loubna’s SmolLM and SmolLM2: a family of state-of-the-art small models with 135M, 360M, and 1.7B parameters on the pareto efficiency frontier. * and Moondream, which we already covered in the 2024 in Vision talk Full Talk on YouTube please like and subscribe! Timestamps * [00:00:05] Loubna Intro * [00:00:33] The Rise of Synthetic Data Everywhere * [00:02:57] Model Collapse * [00:05:14] Phi, FineWeb, Cosmopedia - Synthetic Textbooks * [00:12:36] DCLM, Nemotron-CC * [00:13:28] Post Training - AI2 Tulu, Smol Talk, Cohere Multilingual Arbitrage * [00:16:17] Smol Models * [00:18:24] On Device Models * [00:22:45] Smol Vision Models * [00:25:14] What's Next Transcript 2024 in Synthetic Data and Smol Models [00:00:00] ​ [00:00:05] Loubna Intro [00:00:05] Speaker: ​I'm very happy to be here. Thank you for the invitation. So I'm going to be talking about synthetic data in 2024. And then I'm going to be talking about small on device models. So I think the most interesting thing about synthetic data this year is that like now we have it everywhere in the large language models pipeline. [00:00:33] The Rise of Synthetic Data Everywhere [00:00:33] Speaker: I think initially, synthetic data was mainly used just for post training, because naturally that's the part where we needed human annotators. And then after that, we realized that we don't really have good benchmarks to [00:01:00] measure if models follow instructions well, if they are creative enough, or if they are chatty enough, so we also started using LLMs as judges. [00:01:08] Speaker: Thank you. And I think this year and towards the end of last year, we also went to the pre training parts and we started generating synthetic data for pre training to kind of replace some parts of the web. And the motivation behind that is that you have a lot of control over synthetic data. You can control your prompt and basically also the kind of data that you generate. [00:01:28] Speaker: So instead of just trying to filter the web, you could try to get the LLM to generate what you think the best web pages could look like and then train your models on that. So this is how we went from not having synthetic data at all in the LLM pipeline to having it everywhere. And so the cool thing is like today you can train an LLM with like an entirely synthetic pipeline. [00:01:49] Speaker: For example, you can use our Cosmopedia datasets and you can train a 1B model on like 150 billion tokens that are 100 percent synthetic. And those are also of good quality. And then you can [00:02:00] instruction tune the model on a synthetic SFT dataset. You can also do DPO on a synthetic dataset. And then to evaluate if the model is good, you can use. [00:02:07] Speaker: A benchmark that uses LLMs as a judge, for example, MTBench or AlpacaEvil. So I think this is like a really mind blowing because like just a few years ago, we wouldn't think this is possible. And I think there's a lot of concerns about model collapse, and I'm going to talk about that later. But we'll see that like, if we use synthetic data properly and we curate it carefully, that shouldn't happen. [00:02:29] Speaker: And the reason synthetic data is very popular right now is that we have really strong models, both open and closed. It is really cheap and fast to use compared to human annotations, which cost a lot and take a lot of time. And also for open models right now, we have some really good inference frameworks. [00:02:47] Speaker: So if you have enough GPUs, it's really easy to spawn these GPUs and generate like a lot of synthetic data. Some examples are VLM, TGI, and TensorRT. [00:02:57] Model Collapse [00:02:57] Speaker: Now let's talk about the elephant in the room, model [00:03:00] collapse. Is this the end? If you look at the media and all of like, for example, some papers in nature, it's really scary because there's a lot of synthetic data out there in the web. [00:03:09] Speaker: And naturally we train on the web. So we're going to be training a lot of synthetic data. And if model collapse is going to happen, we should really try to take that seriously. And the other issue is that, as I said, we think, a lot of people think the web is polluted because there's a lot of synthetic data. [00:03:24] Speaker: And for example, when we're building fine web datasets here at Guillerm and Hinek, we're interested in like, how much synthetic data is there in the web? So there isn't really a method to properly measure the amount of synthetic data or to save a webpage synthetic or not. But one thing we can do is to try to look for like proxy words, for example, expressions like as a large language model or words like delve that we know are actually generated by chat GPT. [00:03:49] Speaker: We could try to measure the amount of these words in our data system and compare them to the previous years. For example, here, we measured like a, these words ratio in different dumps of common crawl. [00:04:00] And we can see that like the ratio really increased after chat GPT's release. So if we were to say that synthetic data amount didn't change, you would expect this ratio to stay constant, which is not the case. [00:04:11] Speaker: So there's a lot of synthetic data probably on the web, but does this really make models worse? So what we did is we trained different models on these different dumps. And we then computed their performance on popular, like, NLP benchmarks, and then we computed the aggregated score. And surprisingly, you can see that the latest DOMs are actually even better than the DOMs that are before. [00:04:31] Speaker: So if there's some synthetic data there, at least it did not make the model's worse. Yeah, which is really encouraging. So personally, I wouldn't say the web is positive with Synthetic Data. Maybe it's even making it more rich. And the issue with like model collapse is that, for example, those studies, they were done at like a small scale, and you would ask the model to complete, for example, a Wikipedia paragraph, and then you would train it on these new generations, and you would do that every day. [00:04:56] Speaker: iteratively. I think if you do that approach, it's normal to [00:05:00] observe this kind of behavior because the quality is going to be worse because the model is already small. And then if you train it just on its generations, you shouldn't expect it to become better. But what we're really doing here is that we take a mo

    29 мин.
  7. 24.12.2024

    2024 in Post-Transformers Architectures (State Space Models, RWKV) [LS Live @ NeurIPS]

    Happy holidays! We’ll be sharing snippets from Latent Space LIVE! through the break bringing you the best of 2024! We want to express our deepest appreciation to event sponsors AWS, Daylight Computer, Thoth.ai, StrongCompute, Notable Capital, and most of all all our LS supporters who helped fund the gorgeous venue and A/V production! For NeurIPS last year we did our standard conference podcast coverage interviewing selected papers (that we have now also done for ICLR and ICML), however we felt that we could be doing more to help AI Engineers 1) get more industry-relevant content, and 2) recap 2024 year in review from experts. As a result, we organized the first Latent Space LIVE!, our first in person miniconference, at NeurIPS 2024 in Vancouver. Of perennial interest, particularly at academic conferences, is scaled-up architecture research as people hunt for the next Attention Is All You Need. We have many names for them: “efficient models”, “retentive networks”, “subquadratic attention” or “linear attention” but some of them don’t even have any lineage with attention - one of the best papers of this NeurIPS was Sepp Hochreiter’s xLSTM, which has a particularly poetic significance as one of the creators of the LSTM returning to update and challenge the OG language model architecture: So, for lack of a better term, we decided to call this segment “the State of Post-Transformers” and fortunately everyone rolled with it. We are fortunate to have two powerful friends of the pod to give us an update here: * Together AI: with CEO Vipul Ved Prakash and CTO Ce Zhang joining us to talk about how they are building Together together as a quote unquote full stack AI startup, from the lowest level kernel and systems programming to the highest level mathematical abstractions driving new model architectures and inference algorithms, with notable industry contributions from RedPajama v2, Flash Attention 3, Mamba 2, Mixture of Agents, BASED, Sequoia, Evo, Dragonfly, Dan Fu's ThunderKittens and many more research projects this year * Recursal AI: with CEO Eugene Cheah who has helped lead the independent RWKV project while also running Featherless AI. This year, the team has shipped RWKV v5, codenamed Eagle, to 1.5 billion Windows 10 and Windows 11 machines worldwide, to support Microsoft's on-device, energy-usage-sensitive Windows Copilot usecases, and has launched the first updates on RWKV v6, codenamed Finch and GoldFinch. On the morning of Latent Space Live, they also announced QRWKV6, a Qwen 32B model modified with RWKV linear attention layers. We were looking to host a debate between our speakers, but given that both of them were working on post-transformers alternatives Full Talk on Youtube Please like and subscribe! Links All the models and papers they picked: * Earlier Cited Work * Transformers are RNNs: Fast Autoregressive Transformers with Linear Attention * Hungry hungry hippos: Towards language modeling with state space models * Hyena hierarchy: Towards larger convolutional language models * Mamba: Linear-Time Sequence Modeling with Selective State Spaces * S4: Efficiently Modeling Long Sequences with Structured State Spaces * Just Read Twice (Arora et al) * Recurrent large language models that compete with Transformers in language modeling perplexity are emerging at a rapid rate (e.g., Mamba, RWKV). Excitingly, these architectures use a constant amount of memory during inference. However, due to the limited memory, recurrent LMs cannot recall and use all the information in long contexts leading to brittle in-context learning (ICL) quality. A key challenge for efficient LMs is selecting what information to store versus discard. In this work, we observe the order in which information is shown to the LM impacts the selection difficulty. * To formalize this, we show that the hardness of information recall reduces to the hardness of a problem called set disjointness (SD), a quintessential problem in communication complexity that requires a streaming algorithm (e.g., recurrent model) to decide whether inputted sets are disjoint. We empirically and theoretically show that the recurrent memory required to solve SD changes with set order, i.e., whether the smaller set appears first in-context. * Our analysis suggests, to mitigate the reliance on data order, we can put information in the right order in-context or process prompts non-causally. Towards that end, we propose: (1) JRT-Prompt, where context gets repeated multiple times in the prompt, effectively showing the model all data orders. This gives 11.0±1.3 points of improvement, averaged across 16 recurrent LMs and the 6 ICL tasks, with 11.9× higher throughput than FlashAttention-2 for generation prefill (length 32k, batch size 16, NVidia H100). We then propose (2) JRT-RNN, which uses non-causal prefix-linear-attention to process prompts and provides 99% of Transformer quality at 360M params., 30B tokens and 96% at 1.3B params., 50B tokens on average across the tasks, with 19.2× higher throughput for prefill than FA2. * Jamba: A 52B Hybrid Transformer-Mamba Language Model * We present Jamba, a new base large language model based on a novel hybrid Transformer-Mamba mixture-of-experts (MoE) architecture. * Specifically, Jamba interleaves blocks of Transformer and Mamba layers, enjoying the benefits of both model families. MoE is added in some of these layers to increase model capacity while keeping active parameter usage manageable. * This flexible architecture allows resource- and objective-specific configurations. In the particular configuration we have implemented, we end up with a powerful model that fits in a single 80GB GPU. * Built at large scale, Jamba provides high throughput and small memory footprint compared to vanilla Transformers, and at the same time state-of-the-art performance on standard language model benchmarks and long-context evaluations. Remarkably, the model presents strong results for up to 256K tokens context length. * We study various architectural decisions, such as how to combine Transformer and Mamba layers, and how to mix experts, and show that some of them are crucial in large scale modeling. We also describe several interesting properties of these architectures which the training and evaluation of Jamba have revealed, and plan to release checkpoints from various ablation runs, to encourage further exploration of this novel architecture. We make the weights of our implementation of Jamba publicly available under a permissive license. * SANA: Efficient High-Resolution Image Synthesis with Linear Diffusion Transformers * We introduce Sana, a text-to-image framework that can efficiently generate images up to 4096×4096 resolution. Sana can synthesize high-resolution, high-quality images with strong text-image alignment at a remarkably fast speed, deployable on laptop GPU. Core designs include: * (1) Deep compression autoencoder: unlike traditional AEs, which compress images only 8×, we trained an AE that can compress images 32×, effectively reducing the number of latent tokens. * (2) Linear DiT: we replace all vanilla attention in DiT with linear attention, which is more efficient at high resolutions without sacrificing quality. * (3) Decoder-only text encoder: we replaced T5 with modern decoder-only small LLM as the text encoder and designed complex human instruction with in-context learning to enhance the image-text alignment. * (4) Efficient training and sampling: we propose Flow-DPM-Solver to reduce sampling steps, with efficient caption labeling and selection to accelerate convergence. * As a result, Sana-0.6B is very competitive with modern giant diffusion model (e.g. Flux-12B), being 20 times smaller and 100+ times faster in measured throughput. Moreover, Sana-0.6B can be deployed on a 16GB laptop GPU, taking less than 1 second to generate a 1024×1024 resolution image. Sana enables content creation at low cost. * RWKV: Reinventing RNNs for the Transformer Era * Transformers have revolutionized almost all natural language processing (NLP) tasks but suffer from memory and computational complexity that scales quadratically with sequence length. In contrast, recurrent neural networks (RNNs) exhibit linear scaling in memory and computational requirements but struggle to match the same performance as Transformers due to limitations in parallelization and scalability. * We propose a novel model architecture, Receptance Weighted Key Value (RWKV), that combines the efficient parallelizable training of transformers with the efficient inference of RNNs. * Our approach leverages a linear attention mechanism and allows us to formulate the model as either a Transformer or an RNN, thus parallelizing computations during training and maintains constant computational and memory complexity during inference. * We scale our models as large as 14 billion parameters, by far the largest dense RNN ever trained, and find RWKV performs on par with similarly sized Transformers, suggesting future work can leverage this architecture to create more efficient models. This work presents a significant step towards reconciling trade-offs between computational efficiency and model performance in sequence processing tasks. * LoLCATs: On Low-Rank Linearizing of Large Language Models * Recent works show we can linearize large language models (LLMs) -- swapping the quadratic attentions of popular Transformer-based LLMs with subquadratic analogs, such as linear attention -- avoiding the expensive pretraining costs. However, linearizing LLMs often significantly degrades model quality, still requires training over billions of tokens, and remains limited to smaller 1.3B to 7B LLMs. * We thus propose Low-rank Linear Conversion via Attention Transfer (LoLCATs), a simple two-step method that improves LLM linearizing quality with orders of magnitudes less memory and compute. * We base these steps on two findings. * First, we can

    43 мин.
  8. 23.12.2024

    2024 in Open Models [LS Live @ NeurIPS]

    Happy holidays! We’ll be sharing snippets from Latent Space LIVE! through the break bringing you the best of 2024! We want to express our deepest appreciation to event sponsors AWS, Daylight Computer, Thoth.ai, StrongCompute, Notable Capital, and most of all our LS supporters who helped fund the venue and A/V production! For NeurIPS last year we did our standard conference podcast coverage interviewing selected papers (that we have now also done for ICLR and ICML), however we felt that we could be doing more to help AI Engineers 1) get more industry-relevant content, and 2) recap 2024 year in review from experts. As a result, we organized the first Latent Space LIVE!, our first in person miniconference, at NeurIPS 2024 in Vancouver. Since Nathan Lambert ( Interconnects ) joined us for the hit RLHF 201 episode at the start of this year, it is hard to overstate how much Open Models have exploded this past year. In 2023 only five names were playing in the top LLM ranks, Mistral, Mosaic's MPT, TII UAE's Falcon, Yi from Kai-Fu Lee's 01.ai, and of course Meta's Llama 1 and 2. This year a whole cast of new open models have burst on the scene, from Google's Gemma and Cohere's Command R, to Alibaba's Qwen and Deepseek models, to LLM 360 and DCLM and of course to the Allen Institute's OLMo, OL MOE, Pixmo, Molmo, and Olmo 2 models. We were honored to host Luca Soldaini, one of the research leads on the Olmo series of models at AI2. Pursuing Open Model research comes with a lot of challenges beyond just funding and access to GPUs and datasets, particularly the regulatory debates this year across Europe, California and the White House. We also were honored to hear from and Sophia Yang, head of devrel at Mistral, who also presented a great session at the AI Engineer World's Fair Open Models track! Full Talk on YouTube Please like and subscribe! Timestamps * 00:00 Welcome to Latent Space Live * 00:12 Recap of 2024: Best Moments and Keynotes * 01:22 Explosive Growth of Open Models in 2024 * 02:04 Challenges in Open Model Research * 02:38 Keynote by Luca Soldani: State of Open Models * 07:23 Significance of Open Source AI Licenses * 11:31 Research Constraints and Compute Challenges * 13:46 Fully Open Models: A New Trend * 27:46 Mistral's Journey and Innovations * 32:57 Interactive Demo: Lachat Capabilities * 36:50 Closing Remarks and Networking Transcript Session3Audio [00:00:00] AI Charlie: Welcome to Latent Space Live, our first mini conference held at NeurIPS 2024 in Vancouver. This is Charlie, your AI co host. As a special treat this week, we're recapping the best of 2024 going domain by domain. We sent out a survey to the over 900 of you who told us what you wanted, and then invited the best speakers in the latent space network to cover each field. [00:00:28] AI Charlie: 200 of you joined us in person throughout the day, with over 2, 200 watching live online. Our next keynote covers the state of open models in 2024, with Luca Soldani and Nathan Lambert of the Allen Institute for AI, with a special appearance from Dr. Sophia Yang of Mistral. Our first hit episode of 2024 was with Nathan Lambert on RLHF 201 back in January. [00:00:57] AI Charlie: Where he discussed both reinforcement learning for language [00:01:00] models and the growing post training and mid training stack with hot takes on everything from constitutional AI to DPO to rejection sampling and also previewed the sea change coming to the Allen Institute. And to Interconnects, his incredible substack on the technical aspects of state of the art AI training. [00:01:18] AI Charlie: We highly recommend subscribing to get access to his Discord as well. It is hard to overstate how much open models have exploded this past year. In 2023, only five names were playing in the top LLM ranks. Mistral, Mosaics MPT, and Gatsby. TII UAE's Falcon, Yi, from Kaifu Lee's 01. ai, And of course, Meta's Lama 1 and 2. [00:01:43] AI Charlie: This year, a whole cast of new open models have burst on the scene. From Google's Jemma and Cohere's Command R, To Alibaba's Quen and DeepSeq models, to LLM360 and DCLM, and of course, to the Allen Institute's OLMO, [00:02:00] OLMOE, PIXMO, MOLMO, and OLMO2 models. Pursuing open model research comes with a lot of challenges beyond just funding and access to GPUs and datasets, particularly the regulatory debates this year across Europe. [00:02:14] AI Charlie: California and the White House. We also were honored to hear from Mistral, who also presented a great session at the AI Engineer World's Fair Open Models track. As always, don't forget to check the show notes for the YouTube link to their talk, as well as their slides. Watch out and take care. [00:02:35] Luca Intro [00:02:35] Luca Soldaini: Cool. Yeah, thanks for having me over. I'm Luca. I'm a research scientist at the Allen Institute for AI. I threw together a few slides on sort of like a recap of like interesting themes in open models for, for 2024. Have about maybe 20, 25 minutes of slides, and then we can chat if there are any questions. [00:02:57] Luca Soldaini: If I can advance to the next slide. [00:03:00] Okay, cool. So I did the quick check of like, to sort of get a sense of like, how much 2024 was different from 2023. So I went on Hugging Face and sort of get, tried to get a picture of what kind of models were released in 2023 and like, what do we get in 2024? [00:03:16] Luca Soldaini: 2023 we get, we got things like both LLAMA 1 and 2, we got Mistral, we got MPT, Falcon models, I think the YI model came in at the end. Tail end of the year. It was a pretty good year. But then I did the same for 2024. And it's actually quite stark difference. You have models that are, you know, reveling frontier level. [00:03:38] Luca Soldaini: Performance of what you can get from closed models from like Quen, from DeepSeq. We got Llama3. We got all sorts of different models. I added our own Olmo at the bottom. There's this growing group of like, Fully open models that I'm going to touch on a little bit later. But you know, just looking at the slides, it feels like 2024 [00:04:00] was just smooth sailing, happy knees, much better than previous year. [00:04:04] Luca Soldaini: And you know, you can plot you can pick your favorite benchmark Or least favorite, I don't know, depending on what point you're trying to make. And plot, you know, your closed model, your open model and sort of spin it in ways that show that, oh, you know open models are much closer to where closed models are today versus to Versus last year where the gap was fairly significant. [00:04:29] Luca Soldaini: So one thing that I think I don't know if I have to convince people in this room, but usually when I give this talks about like open models, there is always like this background question in, in, in people's mind of like, why should we use open models? APIs argument, you know, it's, it's. Just an HTTP request to get output from a, from one of the best model out there. [00:04:53] Luca Soldaini: Why do I have to set up infra and use local models? And there are really like two answer. There is the more [00:05:00] researchy answer for this, which is where it might be. Background lays, which is just research. If you want to do research on language models, research thrives on, on open models, there is like large swath of research on modeling, on how these models behave on evaluation and inference on mechanistic interpretability that could not happen at all if you didn't have open models they're also for AI builders, they're also like. [00:05:30] Luca Soldaini: Good use cases for using local models. You know, you have some, this is like a very not comprehensive slides, but you have things like there are some application where local models just blow closed models out of the water. So like retrieval, it's a very clear example. We might have like constraints like Edge AI applications where it makes sense. [00:05:51] Luca Soldaini: But even just like in terms of like stability, being able to say this model is not changing under the hood. It's, there's plenty of good cases for, [00:06:00] for open models. And the community is just not models. Is I stole this slide from one of the Quent2 announcement blog posts. But it's super cool to see like how much tech exists around open models and serving them on making them efficient and hosting them. [00:06:18] Luca Soldaini: It's pretty cool. And so. It's if you think about like where the term opens come from, comes from like the open source really open models meet the core tenants of, of open, of open source specifically when it comes around collaboration, there is truly a spirit, like through these open models, you can build on top of other people. [00:06:41] Luca Soldaini: innovation. We see a lot of these even in our own work of like, you know, as we iterate in the various versions of Alma it's not just like every time we collect from scratch all the data. No, the first step is like, okay, what are the cool data sources and datasets people have put [00:07:00] together for language model for training? [00:07:01] Luca Soldaini: Or when it comes to like our post training pipeline We one of the steps is you want to do some DPO and you use a lot of outputs of other models to improve your, your preference model. So it's really having like an open sort of ecosystem benefits and accelerates the development of open models. [00:07:23] The Definition of Open Models [00:07:23] Luca Soldaini: One thing that we got in 2024, which is not a specific model, but I thought it was really significant, is we first got we got our first open source AI definition. So this is from the open source initiative they've been generally the steward of a lot of the open source licenses when it comes to software and so they embarked on this journey in trying to figure out, okay, How does a license, an open source license for a model look like? [00:07:52] Luca Soldaini: Majority of the work is very dry because

    42 мин.

Об этом подкасте

The podcast by and for AI Engineers! In 2023, over 1 million visitors came to Latent Space to hear about news, papers and interviews in Software 3.0. We cover Foundation Models changing every domain in Code Generation, Multimodality, AI Agents, GPU Infra and more, directly from the founders, builders, and thinkers involved in pushing the cutting edge. Striving to give you both the definitive take on the Current Thing down to the first introduction to the tech you'll be using in the next 3 months! We break news and exclusive interviews from OpenAI, tiny (George Hotz), Databricks/MosaicML (Jon Frankle), Modular (Chris Lattner), Answer.ai (Jeremy Howard), et al. Full show notes always on https://latent.space www.latent.space

Вам может также понравиться

Чтобы прослушивать выпуски с ненормативным контентом, войдите в систему.

Следите за новостями подкаста

Войдите в систему или зарегистрируйтесь, чтобы следить за подкастами, сохранять выпуски и получать последние обновления.

Выберите страну или регион

Африка, Ближний Восток и Индия

Азиатско-Тихоокеанский регион

Европа

Латинская Америка и страны Карибского бассейна

США и Канада