第一百七十期:AlphaFold 会改变什么‪?‬ 纽约文化沙龙

    • Education

2020年11月30日,DeepMind公司公布了一项研究成果,宣称基于深度学习的人工智能算法 AlphaFold 在蛋白质结构预测问题上获得巨大突破。在权威的蛋白质结构预测竞赛(CASP)中,AlphaFold 以约 90% 的准确率一骑绝尘,为这个挑战生物学家50多年的难题提供了一个强有力的解答。
与 AlphaFold 在生物学研究与制药领域激起的强烈反响相比,大众更好奇问题本身以及它将带来的影响:到底什么是蛋白质结构?它和我们熟知的DNA有什么关系?蛋白质结构预测需要解决什么问题?它困难在哪儿?以 AlphaFold 为代表的人工智能技术怎么解决这个问题?这项突破在科研和制药领域意味着什么?它会像 AlphaGo 改变围棋游戏那样改变人类对生命的认知吗?它会变革制药业的发展逻辑,改变人类的健康格局吗?

本期沙龙,我们请来两位活跃在结构生物学和制药领域一线的研究者和创业者,谭大治和赖力鹏,向大家普及这些知识,并且通过二位在人工智能领域的实战经验,展望 AlphaFold 会带来什么样的深刻变化。

谭大治说:

“蛋白质是地球上几乎所有生物体的必要组成部分。无论是新陈代谢、血液循环、免疫反应抑或思维活动,蛋白质分子们主导或参与了我们生命活动的每一个过程。因而所有的人类疾病都与蛋白质分子的异常有关,同时绝大多数已有的和正在研发的药物及疗法皆尝试通过纠正这些异常来达到改善以至治愈的目的。相当一部分研究面临的一个关键挑战即如何获得相关蛋白质分子的三维结构信息,从而指导我们更加有的放矢地进行药物的设计。

“人体中的蛋白质都是由20种不同的氨基酸组成的长链分子, 其中所包含的氨基酸残基数量从几十个到几千个不等。在生理条件下,这些残基并非呈线性排列,而是会折叠成高度复杂且动态的三维结构。而许多不同的蛋白质及其他生物大分子又会组合成更加复杂的分子机器来高效而精确地执行其功能。蛋白质的功能是由其结构所决定,其结构是由其组成氨基酸的序列所决定,而氨基酸的序列则是编码于生物体的遗传信息之中。

“人类通过实验方法解析蛋白质三维结构的历史始于20世纪50年代。在相当长的时间里,X光晶体学是获得蛋白质结构的不二法门。从20世纪80年代起,核磁共振及冷冻电镜也发展成为了解析蛋白质结构的主要技术。尤其是后者在近十年来获得了极大的发展,并有成为蛋白质结构学界主流的趋势。迄今为止,人类已经解析了至少17万个蛋白质结构,其中约5万个来自于人体。尽管如此,有相当数量的与人类疾病有关的蛋白质的三维结构由于种种原因很难通过实验方法获得。因此,进入21世纪以来,人们一直尝试利用计算方法来预测未知的蛋白质结构。目前传统主流的计算方法一般通过计算基于经典力学或量子力学的原子间作用力以及与已经解析过的类似结构的比对来进行预测。最近几年来,随着人工智能技术的蓬勃发展,新一代基于深度学习的蛋白质结构预测方法呈现出了很大的潜力,而AlphaFold就是这些新方法中的杰出代表。”

赖力鹏说:

“对于健康的关注是人类一直持续的话题。目前,药物研发面临着成本高、周期长、成功率低的挑战。新药发现领域的研究者们进行着各种尝试,希望通过更加理性化、系统化的药物设计方法来提高药物发现的效率。一套更有效的药物设计方法,一方面可以为患者带来更好的治疗药物,另一方面也为行业的可持续发展提供更大的机会。

“过往,计算机辅助药物设计为理性药物设计提供了大量

2020年11月30日,DeepMind公司公布了一项研究成果,宣称基于深度学习的人工智能算法 AlphaFold 在蛋白质结构预测问题上获得巨大突破。在权威的蛋白质结构预测竞赛(CASP)中,AlphaFold 以约 90% 的准确率一骑绝尘,为这个挑战生物学家50多年的难题提供了一个强有力的解答。
与 AlphaFold 在生物学研究与制药领域激起的强烈反响相比,大众更好奇问题本身以及它将带来的影响:到底什么是蛋白质结构?它和我们熟知的DNA有什么关系?蛋白质结构预测需要解决什么问题?它困难在哪儿?以 AlphaFold 为代表的人工智能技术怎么解决这个问题?这项突破在科研和制药领域意味着什么?它会像 AlphaGo 改变围棋游戏那样改变人类对生命的认知吗?它会变革制药业的发展逻辑,改变人类的健康格局吗?

本期沙龙,我们请来两位活跃在结构生物学和制药领域一线的研究者和创业者,谭大治和赖力鹏,向大家普及这些知识,并且通过二位在人工智能领域的实战经验,展望 AlphaFold 会带来什么样的深刻变化。

谭大治说:

“蛋白质是地球上几乎所有生物体的必要组成部分。无论是新陈代谢、血液循环、免疫反应抑或思维活动,蛋白质分子们主导或参与了我们生命活动的每一个过程。因而所有的人类疾病都与蛋白质分子的异常有关,同时绝大多数已有的和正在研发的药物及疗法皆尝试通过纠正这些异常来达到改善以至治愈的目的。相当一部分研究面临的一个关键挑战即如何获得相关蛋白质分子的三维结构信息,从而指导我们更加有的放矢地进行药物的设计。

“人体中的蛋白质都是由20种不同的氨基酸组成的长链分子, 其中所包含的氨基酸残基数量从几十个到几千个不等。在生理条件下,这些残基并非呈线性排列,而是会折叠成高度复杂且动态的三维结构。而许多不同的蛋白质及其他生物大分子又会组合成更加复杂的分子机器来高效而精确地执行其功能。蛋白质的功能是由其结构所决定,其结构是由其组成氨基酸的序列所决定,而氨基酸的序列则是编码于生物体的遗传信息之中。

“人类通过实验方法解析蛋白质三维结构的历史始于20世纪50年代。在相当长的时间里,X光晶体学是获得蛋白质结构的不二法门。从20世纪80年代起,核磁共振及冷冻电镜也发展成为了解析蛋白质结构的主要技术。尤其是后者在近十年来获得了极大的发展,并有成为蛋白质结构学界主流的趋势。迄今为止,人类已经解析了至少17万个蛋白质结构,其中约5万个来自于人体。尽管如此,有相当数量的与人类疾病有关的蛋白质的三维结构由于种种原因很难通过实验方法获得。因此,进入21世纪以来,人们一直尝试利用计算方法来预测未知的蛋白质结构。目前传统主流的计算方法一般通过计算基于经典力学或量子力学的原子间作用力以及与已经解析过的类似结构的比对来进行预测。最近几年来,随着人工智能技术的蓬勃发展,新一代基于深度学习的蛋白质结构预测方法呈现出了很大的潜力,而AlphaFold就是这些新方法中的杰出代表。”

赖力鹏说:

“对于健康的关注是人类一直持续的话题。目前,药物研发面临着成本高、周期长、成功率低的挑战。新药发现领域的研究者们进行着各种尝试,希望通过更加理性化、系统化的药物设计方法来提高药物发现的效率。一套更有效的药物设计方法,一方面可以为患者带来更好的治疗药物,另一方面也为行业的可持续发展提供更大的机会。

“过往,计算机辅助药物设计为理性药物设计提供了大量

Top Podcasts In Education

The Mel Robbins Podcast
Mel Robbins
The Jordan B. Peterson Podcast
Dr. Jordan B. Peterson
Mick Unplugged
Mick Hunt
School Business Insider
John Brucato
TED Talks Daily
TED
Do The Work
Do The Work