AI可可AI生活

fly51fly

来自 @爱可可-爱生活 的第一手AI快报,用最通俗的语言,聊最前沿的人工智能科研进展~ #人工智能# #科技前沿#

  1. HÁ 48 MIN.

    [人人能懂] 从任务分解、元认知到精准剪枝

    有没有想过,为什么AI会像武林高手一样,有时会练伤自己的“七伤拳”,甚至在减肥时反而越减越“胖”?本期节目,我们将一同潜入AI的“思想世界”,去看看它是如何学会“四两拨千斤”的巧劲,又是如何为自己编写“武功秘籍”来高效成长的。我们还会见证科学家如何像外科医生一样,用一把“手术刀”精准切除AI的坏念头。准备好了吗?让我们从这几篇最新的论文中,发现让AI和我们自己都变得更聪明的“章法”! 00:00:35 AI的“四两拨千斤”:高手做事,不靠蛮力  00:05:28 AI的“武功秘籍”:高手是怎么炼成的? 00:10:53 AI的“外科手术刀”:如何精准“切除”一个坏念头? 00:16:16 AI的“七伤拳”:学得越多,忘得越快? 00:22:08 给AI“减肥”,为何越减越“胖”? 本期介绍的几篇论文: [LG] Small Models, Big Results: Achieving Superior Intent Extraction through Decomposition   [Google]   https://arxiv.org/abs/2509.12423   --- [LG] Metacognitive Reuse: Turning Recurring LLM Reasoning Into Concise Behaviors   [Meta]   https://arxiv.org/abs/2509.13237   --- [LG] RepIt: Representing Isolated Targets to Steer Language Models   [University of California, Santa Cruz & UC Berkeley]   https://arxiv.org/abs/2509.13281   --- [LG] RL Fine-Tuning Heals OOD Forgetting in SFT   [Polytechnique Montreal & University of Montreal & McGill University]   https://arxiv.org/abs/2509.12235   --- [LG] Reasoning Models Can be Accurately Pruned Via Chain-of-Thought Reconstruction   [LinkedIn]   https://arxiv.org/abs/2509.12464

    28min
  2. HÁ 1 DIA

    [人人能懂] AI江湖的武林秘籍、操盘学徒与瘦身魔法

    你有没有想过,那些让人眼花缭乱的AI新方法,背后可能藏着同样的“武功心法”?我们又要如何像培养学徒一样,把AI训练成能炒股、会分析的“操盘手”,甚至给它请个“小助理”来把工作效率提升七倍?本期节目,我们就从几篇最新的论文出发,聊聊如何给AI“瘦身”、“加速”,并看清它究竟是全能学霸,还是个连数数都会搞错的“偏科生”。 00:00:30 AI武林秘籍:天下武功,同出一门? 00:06:02 AI炒股机器人进化论:从“学徒”到“操盘手” 00:11:49 AI模型的“瘦身”魔法:让老模型焕发新生 00:16:57 AI画画慢?给它请个“小助理” 00:22:42 给AI当“统计学老师”:学霸还是偏科生? 本期介绍的几篇论文: [LG] Opal: An Operator Algebra View of RLHF   [Microsoft]   https://arxiv.org/abs/2509.11298   --- [LG] Trading-R1: Financial Trading with LLM Reasoning via Reinforcement Learning   [University of California, Los Angeles & University of Washington]   https://arxiv.org/abs/2509.11420   --- [LG] PHLoRA: data-free Post-hoc Low-Rank Adapter extraction from full-rank checkpoint   [Amazon AGI & EdgeRunner AI]   https://arxiv.org/abs/2509.10971   --- [LG] SpeCa: Accelerating Diffusion Transformers with Speculative Feature Caching   [Shanghai Jiao Tong University & The Hong Kong University of Science and Technology]   https://arxiv.org/abs/2509.11628   --- [CL] Reasoning Under Uncertainty: Exploring Probabilistic Reasoning Capabilities of LLMs   [University of Maryland]   https://arxiv.org/abs/2509.10739

    29min
  3. HÁ 2 DIAS

    [人人能懂] AI在模仿、规划,还是真的在思考?

    有没有想过,AI的学习之路,和我们人类有多像,又有多不像?本期节目,我们将一口气为你拆解五篇最新论文,看看AI究竟是如何学习的:它既能像婴儿一样,通过“思想实验”无师自通地理解世界;也能像一个项目总指挥,用“加杠杆”的智慧来管理庞大的训练工程。我们还会看到,AI正在从一个埋头解题的“学生”,转变为一个善用人类工具的“规划师”,而它的成长也需要一套科学的“发育课程”来避免“躺平摆烂”。最后,我们还要揭开AI“现学现卖”能力的底牌,看看它到底是天才,还是一个高明的“格式控”? 00:00:43 AI的自我进化:它怎么学会了“无师自通”? 00:06:14 AI训练的总指挥:为什么有时候要给下属的成果“加杠杆”? 00:11:48 AI的新角色:与其当“解题者”,不如当“规划师” 00:17:21 AI的“成长发育”:为什么先学会画线,才能成为大师? 00:23:13 “现学现卖”的AI,真的学会了吗? 本期介绍的几篇论文: [CV] World Modeling with Probabilistic Structure Integration   [Stanford University]   https://arxiv.org/abs/2509.09737   --- [LG] Understanding Outer Optimizers in Local SGD: Learning Rates, Momentum, and Acceleration   [Google Research & Google DeepMind & Princeton University]   https://arxiv.org/abs/2509.10439   --- [LG] SciML Agents: Write the Solver, Not the Solution   [UC Berkeley & LBNL]   https://arxiv.org/abs/2509.09936   --- [CV] LayerLock: Non-collapsing Representation Learning with Progressive Freezing   [Google DeepMind]   https://arxiv.org/abs/2509.10156   --- [CL] Is In-Context Learning Learning?   [Microsoft]   https://arxiv.org/abs/2509.10414

    30min
  4. HÁ 3 DIAS

    [人人能懂] 从经验分享到刻意练习,AI的协作与成长新范式

    你有没有想过,无论是AI还是我们自己,成为一个真正的高手,秘诀到底是什么?本期节目,我们将通过五篇极具启发性的最新论文,揭示几种截然不同的“高手修炼心法”。我们会探讨,如何给AI请一位能从数学公理开始自动出题的“奥数教练”,又如何让AI们从吃“大锅饭”变成开“经验分享会”。我们还将看到,为什么从“半成品”开始练习效率更高,并大胆质疑:AI煞有介事的“思考过程”,到底是真的在动脑,还只是一场“表演”? 00:00:38 给AI请一位“奥数教练”:高手是怎么炼成的? 00:06:03 AI的“大锅饭”与“分享会”:高手是怎么互相“抄作业”的 00:11:09 高手是怎么炼成的?从半成品开始练! 00:16:12 AI的“内心戏”:是真思考,还是在表演? 00:21:17 AI裁判的“养成记”:从随机猜测到精准判断 本期介绍的几篇论文: [CL] Saturation-Driven Dataset Generation for LLM Mathematical Reasoning in the TPTP Ecosystem   [University of Lille]   https://arxiv.org/abs/2509.06809   --- [LG] Sharing is Caring: Efficient LM Post-Training with Collective RL Experience Sharing   [Gensyn AI Team]   https://arxiv.org/abs/2509.08721   --- [LG] Tree-OPO: Off-policy Monte Carlo Tree-Guided Advantage Optimization for Multistep Reasoning   [Technical University Munich & Huawei R&D Munich & Huawei Noah’s Ark Lab]   https://arxiv.org/abs/2509.09284   --- [LG] Performative Thinking? The Brittle Correlation Between CoT Length and Problem Complexity   [Arizona State University & Yale University]   https://arxiv.org/abs/2509.07339   --- [LG] floq: Training Critics via Flow-Matching for Scaling Compute in Value-Based RL   [CMU & University of Warsaw]   https://arxiv.org/abs/2509.06863

    28min

Sobre

来自 @爱可可-爱生活 的第一手AI快报,用最通俗的语言,聊最前沿的人工智能科研进展~ #人工智能# #科技前沿#

Você também pode gostar de