Eric Daza | Important Ideas in Causal Inference

Data & Science with Glen Wright Colopy


Eric Daza | Important Ideas in Causal Inference

YouTube: https://youtu.be/K5nsSMJVIT0

Andrew Gelman and Aki Vehtari wrote a paper titled, "What are the most important statistical ideas of the past 50 years?". The first idea in the list is "counterfactual causal inference". Eric Daza (Evidation Health) walks us through the main ideas of the Gelman & Vehtari paper, drawing examples from several fields, including medical & healthcare statistics. 

Topics
0:00 - Coming up...Correlation vs Causation
1:20 - Most important statistical ideas over the last 50 years
6:10 - Counterfactual Causal Inference
9:40 - Assumptions Change between Applied Domains
21:10 - Propensity Score Methods
25:15 - Transportability of Scientific Results 
26:30 - People don't want generalizable results
32:00 - Generic Computation Algorithms
37:00 - Reweighting
43:57 - Matching Methods
58:20 - Medical Data is Higher Dimensional that we think.
1:00:15 - Is a Trial Population Representative? 
1:10:35 - Causal Models in the Future
1:18:45 - Apostates Welcome
1:21:45 - Scientific Debate

Para ouvir episódios explícitos, inicie sessão.

Fique por dentro deste podcast

Inicie sessão ou crie uma conta para seguir podcasts, salvar episódios e receber as atualizações mais recentes.

Selecionar um país ou região

África, Oriente Médio e Índia

Ásia‑Pacífico

Europa

América Latina e Caribe

Estados Unidos e Canadá