StatLearn 2013 - Workshop on "Challenging problems in Statistical Learning"

Statlearn2013
StatLearn 2013 - Workshop on "Challenging problems in Statistical Learning"

L'apprentissage statistique joue de nos jours un rôle croissant dans de nombreux domaines scientifiques et doit de ce fait faire face à des problèmes nouveaux. Il est par conséquent important de proposer des méthodes d'apprentissage statistique adaptées aux problèmes modernes posés par les différents champs d'application. Outre l'importance de la précision des méthodes proposées, elles devront également apporter une meilleure compréhension des phénomènes observés. Afin de faciliter les contacts entre les différentes communautés et de faire ainsi germer de nouvelles idées, un colloquium d'audience internationale (en langue anglaise) sur le thème «Challenging problems in Statistical Learning» a été organisé à l'Université Bordeaux Segalen les 8 et 9 avril 2013. Vous trouverez ci-dessous les enregistrements des exposés donnés lors de ce colloquium. Recommandé à : étudiant de la discipline, chercheur - Catégorie : cours podcast - Année de réalisation : 2013

Episódios

  1. 16/05/2013 · VÍDEO

    Investigating on nonlinear relationship in high-dimensional setting (Frédéric Ferraty)

    The high dimensional setting is a modern and dynamic research area in Statistics. It covers numerous situations where the number of explanatory variables is much larger than the sample size. This is the case in genomics when one observes (dozens of) thousands genes expression ; typically one has at hand a small sample of high dimensioned vectors derived from a large set of covariates. Such datasets will be abbreviated to HDD-I for High Dimensional Data of type I. A particular setting may correspond to the observation of a collection of curves, surfaces, ... sampled at high frequencies (design points) ; these sets of data are gathered under the terminology functional data (or functional variables) and will be abbreviated to HDD-II (High Dimensional Data of type II). The main feature of HDD-II (and difference with HDD-I) is due to the existence of high colinearities between explanatory variables which reduces the overall dimensionality of the data. Last twenty years have been devoted to develop successful methodologies able to manage such high dimensional data. Essentially sparse linear modelling involving variable selection techniques has been proposed to investigate on HDD-I whereas non selective functional linear approaches have been introduced to handle HDD-II mainly. However, as in the standard multivariate setting, linear assumption may too much restrictive by hiding relevant nonlinear aspects. This is why in the last decade flexible methodologies taking into account nonlinear relationship have been developed to better understand the structure of such high dimensional data. So, the aim of this talk is to present and illustrate on various examples recent approaches connecting nonparametric, selective and functional techniques in order to handle nonlinear relationship in HDD-I or HDD-II settings which allow us to tackle various challenging issues.

    54min
  2. 16/05/2013 · VÍDEO

    Modular priors for partially identified models (Ioanna Manolopoulou)

    This work is motivated by the challenges of drawing inferences from presence-only data. For example, when trying to determine what habitat sea-turtles "prefer" we only have data on where turtles were observed, not data about where the turtles actually are. Therefore, if we find that our sample contains very few turtles living in regions with tall sea grass, we cannot conclude that these areas are unpopular with the turtles, merely that we are unlikely to observe them there. Similar issues arise in forensic accounting : attempts to determine which companies are apt to misreport their official earnings based on a history of which firms were censured by the SEC are confounded by the fact that we only observe which firms got caught cheating, not which firms cheat (many of whom do not get caught). This sort of confounding is insurmountable from a point-estimation perspective, but the data are not entirely uninformative either. Our present work is devoted to parametrizing observation models in a way that isolates which aspects of the model are informed by the data and which aspects are not. This approach allows us to construct priors which are informative with respect to the unidentified parts of the model without simultaneously (and unintentionally) biasing posterior estimates of the identified parameters ; these priors do not "fight against" the data. In addition, their modularity allows for convenient sensitivity analysis in order to examine the extent to which our ultimate conclusions are driven by prior assumptions as opposed to our data. Joint work with Richard Hahn and Jared Murray.

    50min

Sobre

L'apprentissage statistique joue de nos jours un rôle croissant dans de nombreux domaines scientifiques et doit de ce fait faire face à des problèmes nouveaux. Il est par conséquent important de proposer des méthodes d'apprentissage statistique adaptées aux problèmes modernes posés par les différents champs d'application. Outre l'importance de la précision des méthodes proposées, elles devront également apporter une meilleure compréhension des phénomènes observés. Afin de faciliter les contacts entre les différentes communautés et de faire ainsi germer de nouvelles idées, un colloquium d'audience internationale (en langue anglaise) sur le thème «Challenging problems in Statistical Learning» a été organisé à l'Université Bordeaux Segalen les 8 et 9 avril 2013. Vous trouverez ci-dessous les enregistrements des exposés donnés lors de ce colloquium. Recommandé à : étudiant de la discipline, chercheur - Catégorie : cours podcast - Année de réalisation : 2013

Mais de Université Paris 1 Panthéon-Sorbonne

Para ouvir episódios explícitos, inicie sessão.

Fique por dentro deste podcast

Inicie sessão ou crie uma conta para seguir podcasts, salvar episódios e receber as atualizações mais recentes.

Selecionar um país ou região

África, Oriente Médio e Índia

Ásia‑Pacífico

Europa

América Latina e Caribe

Estados Unidos e Canadá