MCMP – Logic

MCMP Team

Mathematical Philosophy - the application of logical and mathematical methods in philosophy - is about to experience a tremendous boom in various areas of philosophy. At the new Munich Center for Mathematical Philosophy, which is funded mostly by the German Alexander von Humboldt Foundation, philosophical research will be carried out mathematically, that is, by means of methods that are very close to those used by the scientists. The purpose of doing philosophy in this way is not to reduce philosophy to mathematics or to natural science in any sense; rather mathematics is applied in order to derive philosophical conclusions from philosophical assumptions, just as in physics mathematical methods are used to derive physical predictions from physical laws. Nor is the idea of mathematical philosophy to dismiss any of the ancient questions of philosophy as irrelevant or senseless: although modern mathematical philosophy owes a lot to the heritage of the Vienna and Berlin Circles of Logical Empiricism, unlike the Logical Empiricists most mathematical philosophers today are driven by the same traditional questions about truth, knowledge, rationality, the nature of objects, morality, and the like, which were driving the classical philosophers, and no area of traditional philosophy is taken to be intrinsically misguided or confused anymore. It is just that some of the traditional questions of philosophy can be made much clearer and much more precise in logical-mathematical terms, for some of these questions answers can be given by means of mathematical proofs or models, and on this basis new and more concrete philosophical questions emerge. This may then lead to philosophical progress, and ultimately that is the goal of the Center.

  1. 2019/04/18 · 影片

    From Logic to Behavior

    Jakub Szymanik (Amsterdam) gives a talk at the MCMP Colloquium (12 June, 2013) titled "From Logic to Behavior". Abstract: In this talk I will explore the applicability of modern logic and computation theory in cognitive science. I will show how logic can be used to build cognitive models in order to explain and predict human behavior. I will also illustrate the use of logical and computational toolboxes to evaluate (not necessarily logical) cognitive models along the following dimensions: (i) logical relationships, such as essential incompatibility or essential identity; (ii) explanatory power; (iii) computational plausibility. I will argue that logic is a general tool suited for cognitive modeling, and its role in psychology need not be restricted to the psychology of reasoning. Taking Marr's distinctions seriously I will also discuss how logical studies can improve our understanding of cognition by proposing new methodological perspectives in psychology. I will illustrate my general claims with examples of the successful research on the intersection of logic and cognitive science. I will mostly talk about two research projects I have been recently involved in: computational semantics for generalized quantifiers in natural language and logical models for higher order social cognition. The major focus will be computational complexity and its interplay with "difficulty" as experienced by subjects in cognitive science.

    1 小時 11 分鐘
  2. 2019/04/18 · 影片

    Interpretational Logical Truth: The Problem of Admissible Interpretations

    Alexandra Zinke (Konstanz) gives a talk at the MCMP Colloquium (24 January, 2013) titled "Interpretational Logical Truth: The Problem of Admissible Interpretations". Abstract: According to the interpretational definition of logical truth a sentence is logically true iff it is true under all interpretations of the non-logical terms. The most prominent problem of the interpretational definition is the problem of demarcating the logical from the non-logical terms. I argue that it does not suffice to only exclude those interpretations from the admissible ones that reinterpret the logical constants. There are further restrictions on admissible interpretations we must impose in order to secure that there are at least some logical truths. Once it is seen that we must impose non-trivial, semantical restrictions on admissible interpretations anyway, the question arises why we should not also accept even further restrictions. I formulate restrictions which would lead to the consequence that all analytical sentences come out as logically true and argue that these restrictions are of the same character as those we already subscribe to. Imposing only some of the restrictions seems arbitrary. The real challenge for proponents of the interpretational definition is thus not just the problem of demarcating the logical from the non-logical terms, but the more general problem of demarcating the admissible from the inadmissible interpretations.

    33 分鐘
  3. 2019/04/18 · 影片

    A plea for beta-reduction by value

    Marie Duzi (Technical University Ostrava) gives a talk at the MCMP Colloquium (15 May, 2014) titled "A plea for beta-reduction by value". Abstract: This paper solves, in a logically rigorous manner, a problem discussed in a 2004 paper by Stephen Neale and originally advanced as a counterexample to Chomsky’s theory of binding. The example I will focus on is the following. John loves his wife. So does Peter. Therefore, John and Peter share a property. Only which one? There are two options. (1) Loving John’s wife. Then John and Peter love the same woman (and there is trouble on the horizon). (2) Loving one’s own wife. Then, unless they are married to the same woman, John loves one woman and Peter loves another woman (and both are exemplary husbands). On the strict reading of “John loves his wife, and so does Peter” property (1) is the one they share. On the sloppy reading, property (2) is the one they share. The dialectics of this contribution is to move from linguistics through logic to semantics. An issue originally bearing on binding in linguistics is used to make a point about -conversion in the typed ß-calculus. Since the properties loving John’s wife and loving one’s own wife as attributed to John are distinct, there is room for oscillation between the sloppy and the strict reading. But once we feed the formal renditions of attribution of these two properties to John into the widespread ß-calculus for logical analysis, a logical problem arises. The problem is this. Their respective ß-redexes are distinct, for sure, but they share the same ß-contractum. This contractum corresponds to the strict reading. So ß-conversion predicts, erroneously, that two properties applied to John ß-reduce to one. The result is that the sloppy reading gets squeezed out. ß-reduction blots out the anaphoric character of ‘his wife’, while the resulting contractum is itself ß-expandable back into both the strict and the sloppy reading. Information is lost in transformation. The information lost when performing ß-reduction on the formal counterparts of “John loves his wife” is whether the property that was applied was (1) or (2), since both can be reconstructed from the contractum, though neither in particular. The sentence “John loves his wife, and so does Peter” ostensibly shows that the ß-calculus is too crude an analytical tool for at least one kind of perfectly natural use of indexicals. The problematic reduction and its solution will both be discussed within the framework of Tichý’s Transparent Intensional Logic. Tichý’s TIL was developed simultaneously with Montague’s Intensional Logic. The technical tools of the two disambiguations of the analysandum will be familiar from Montague’s intensional logic, with two important exceptions. One is that we ß-bind separate variables w1,…,wn ranging over possible worlds and t1,…,tn ranging over times. This dual binding is tantamount to explicit intensionalization and temporalization. The other exception is that functional application is the logic both of extensionalization of intensions (functions from possible worlds) and of predication. I will demonstrates that, and how, the ß-calculus is up for the challenge, provided a rule of ß-conversion by value is adopted. The logical contribution of the paper is a generally valid form of ß-reduction by value rather than by name. The philosophical application of ß-reduction by value to a context containing anaphora is another contribution of this paper. The standard approach to VP ellipsis based on ß-abstracts and variable binding can, thus, be safely upheld. Our solution has the following features. First, unambiguous terms and expressions with a pragmatically incomplete meaning, like ‘his wife’ or “So does Peter”, are analyzed in all contexts as expressing an open construction containing at least one free variable with a fixed domain of quantification. Second, the solution uses ß-conversion by value, rather than conversion by name. The generally valid rule ...

    50 分鐘

評分與評論

3
(滿分 5 顆星)
2 則評分

簡介

Mathematical Philosophy - the application of logical and mathematical methods in philosophy - is about to experience a tremendous boom in various areas of philosophy. At the new Munich Center for Mathematical Philosophy, which is funded mostly by the German Alexander von Humboldt Foundation, philosophical research will be carried out mathematically, that is, by means of methods that are very close to those used by the scientists. The purpose of doing philosophy in this way is not to reduce philosophy to mathematics or to natural science in any sense; rather mathematics is applied in order to derive philosophical conclusions from philosophical assumptions, just as in physics mathematical methods are used to derive physical predictions from physical laws. Nor is the idea of mathematical philosophy to dismiss any of the ancient questions of philosophy as irrelevant or senseless: although modern mathematical philosophy owes a lot to the heritage of the Vienna and Berlin Circles of Logical Empiricism, unlike the Logical Empiricists most mathematical philosophers today are driven by the same traditional questions about truth, knowledge, rationality, the nature of objects, morality, and the like, which were driving the classical philosophers, and no area of traditional philosophy is taken to be intrinsically misguided or confused anymore. It is just that some of the traditional questions of philosophy can be made much clearer and much more precise in logical-mathematical terms, for some of these questions answers can be given by means of mathematical proofs or models, and on this basis new and more concrete philosophical questions emerge. This may then lead to philosophical progress, and ultimately that is the goal of the Center.

「Ludwig-Maximilians-Universität München」的更多內容