26 épisodes

La chaire annuelle Innovation technologique Liliane Bettencourt, créée en 2006, marque la volonté commune du Collège de France et de la Fondation Bettencourt Schueller de mettre en valeur l'importance des travaux qui doivent être consacrés à l'innovation technologique.

Chaire Innovation technologique Liliane Bettencourt 2022-2023

La mécanique moléculaire des fluides

Un champ d'innovation pour l'eau et l'énergie

Ce cours décrit les dernières avancées dans le domaine émergent de la nanofluidique, la science des flots moléculaires, qui explore les écoulements et le transport des fluides aux échelles nanométriques. Ce monde de l'infiniment petit fluidique, c'est la frontière où le continuum de la mécanique des fluides rencontre la nature atomique de la matière, voire sa nature quantique. On y observe des écoulements quasiment sans frottement, des effets quantiques émergents, des effets mémoires qui permettent désormais de rêver de calculateurs ioniques. La nature exploite pleinement les bizarreries fluidiques aux nanoéchelles. En utilisant une circuiterie faite de multiples canaux biologiques, elle est capable de prouesses technologiques invraisemblables : pompes ioniques, moteurs à protons, pores ultra-sélectifs, canaux stimulables… une orfèvrerie fluidique simplement époustouflante. Peut-on s'inspirer et égaler ces performances avec des canaux artificiels ? Quelles sont les propriétés spécifiques des fluides aux nanoéchelles ? Comment les quantifier expérimentalement ? Peut-on les exploiter en termes d'innovation ?

Le cours abordera les questions fondamentales posées par le transport des fluides aux échelles moléculaires ou nanométriques et les propriétés émergentes à ces échelles. Nous introduirons en particulier les nouveaux outils expérimentaux et théoriques qui ont été développés pour mesurer, comprendre et exploiter les nouvelles propriétés de transport.

La nanofluidique est également un domaine où il y a un chemin court entre la science fondamentale et l'innovation de rupture, car les nouvelles propriétés nanofluidiques offrent des solutions inattendues pour de multiples applications, notamment pour le dessalement, la remédiation des eaux, ou encore l'énergie bleue – notamment l'énergie osmotique. Nous explorerons quelques exemples où ce cheminement s'est concrétisé par des innovations de rupture.

Innovation technologique Liliane Bettencourt (2022-2023) - Lydéric Bocquet Collège de France

    • Éducation
    • 5,0 • 2 notes

La chaire annuelle Innovation technologique Liliane Bettencourt, créée en 2006, marque la volonté commune du Collège de France et de la Fondation Bettencourt Schueller de mettre en valeur l'importance des travaux qui doivent être consacrés à l'innovation technologique.

Chaire Innovation technologique Liliane Bettencourt 2022-2023

La mécanique moléculaire des fluides

Un champ d'innovation pour l'eau et l'énergie

Ce cours décrit les dernières avancées dans le domaine émergent de la nanofluidique, la science des flots moléculaires, qui explore les écoulements et le transport des fluides aux échelles nanométriques. Ce monde de l'infiniment petit fluidique, c'est la frontière où le continuum de la mécanique des fluides rencontre la nature atomique de la matière, voire sa nature quantique. On y observe des écoulements quasiment sans frottement, des effets quantiques émergents, des effets mémoires qui permettent désormais de rêver de calculateurs ioniques. La nature exploite pleinement les bizarreries fluidiques aux nanoéchelles. En utilisant une circuiterie faite de multiples canaux biologiques, elle est capable de prouesses technologiques invraisemblables : pompes ioniques, moteurs à protons, pores ultra-sélectifs, canaux stimulables… une orfèvrerie fluidique simplement époustouflante. Peut-on s'inspirer et égaler ces performances avec des canaux artificiels ? Quelles sont les propriétés spécifiques des fluides aux nanoéchelles ? Comment les quantifier expérimentalement ? Peut-on les exploiter en termes d'innovation ?

Le cours abordera les questions fondamentales posées par le transport des fluides aux échelles moléculaires ou nanométriques et les propriétés émergentes à ces échelles. Nous introduirons en particulier les nouveaux outils expérimentaux et théoriques qui ont été développés pour mesurer, comprendre et exploiter les nouvelles propriétés de transport.

La nanofluidique est également un domaine où il y a un chemin court entre la science fondamentale et l'innovation de rupture, car les nouvelles propriétés nanofluidiques offrent des solutions inattendues pour de multiples applications, notamment pour le dessalement, la remédiation des eaux, ou encore l'énergie bleue – notamment l'énergie osmotique. Nous explorerons quelques exemples où ce cheminement s'est concrétisé par des innovations de rupture.

    Colloque - La nanofluidique à la croisée des chemins : New Approaches in Nanofluidics: Carbon Nanotubes Mechanical Resonators

    Colloque - La nanofluidique à la croisée des chemins : New Approaches in Nanofluidics: Carbon Nanotubes Mechanical Resonators

    Innovation technologique Liliane Bettencourt (2022-2023) - Lydéric Bocquet
    Collège de France
    Année 2022-2023

    Colloque - La nanofluidique à la croisée des chemins : New Approaches in Nanofluidics: Carbon Nanotubes Mechanical Resonators

    I will present our work in the direction of combining mechanical resonator and nanofluidic channel with a carbon nanotube.
    First, I will discuss how mechanical resonators will allow to answer, experimentally, open questions in the nanofluidic community about the structure of water, the phase diagram and the mechanism behind the fast flow observed in carbon nanotube. Second, I will show that SU8 microfluidic allows to combine antagonist worlds of fluidics (ambient pressure) and mechanics (secondary vacuum). Such devices can sustain large water pressure up to 5 bars and do not degrade over time. Porosity of SU8 is equal or better to PDMS, the standard in fluidics. Moving to carbon nanotube nanomechanical resonators, I will show that they exhibit exquisite mass sensitivity down to 70 yg, even at room temperature. This feature is observed in several devices, making it a reliable asset. I will discuss the limitations to the sensitivity in terms of thermomechanical noise, frequency fluctuations, etc.
    Finally, I will demonstrate that electrons in carbon nanotubes can distinguish water adsorbed on the surface of the nanotube from water confined inside the nanotube.
    Again, this feature is reproducible in several devices and independent of the metallicity of the nanotube.

    Adrien Noury

    Adrien Noury received his PhD in Physics (Photonics and Material Sciences) in 2014 from Univ. Paris Sud, on carbon nanotubes hybrid photonics. He then joined the group of Adrian Bachtold in ICFO Barcelona to work on quantum electromechanics with graphene drums, and later Helium superfluids on nanotube mechanical resonator. Since 2017 he is CNRS researcher in L2C, Montpellier, where he started and led the Nanomechanics group. His research focuses on harnessing the exceptional sensitivity of nanotube mechanical resonators in order to adress challenging questions in Physics.

    • 33 min
    Colloque - La nanofluidique à la croisée des chemins : Nanofluidics: Exploring New Frontiers

    Colloque - La nanofluidique à la croisée des chemins : Nanofluidics: Exploring New Frontiers

    Innovation technologique Liliane Bettencourt (2022-2023) - Lydéric Bocquet
    Collège de France
    Année 2022-2023

    Colloque - La nanofluidique à la croisée des chemins : Nanofluidics: Exploring New Frontiers

    In this talk, I will introduce a novel method based on liquid-activated quantum emission from native hBN defects for nanofluidic sensing. Liquids confined down to the atomic scale can show radically new properties. However, only indirect and ensemble measurements operate in such extreme confinement, calling for novel optical approaches enabling direct imaging at the molecular level. Using our method, we harness quantum emission originating from native defects in hexagonal boron nitride (hBN) for molecular imaging and sensing in nanometrically confined liquids. We show that defect activation occurs through chemisorption of organic solvent molecules, revealing single-molecule dynamics at the interface through spatially correlated activation of neighboring defects. Defect emission spectra further offer a direct readout of local dielectric properties, unveiling increasing dielectric order under nanometer-scale confinement. Liquid-activated native hBN defects bridge the gap between solid-state nanophotonics and nanofluidics, opening new avenues for nanoscale sensing and optofluidics.

    Liquid-activated quantum emission from native hBN defects for nanofluidic sensing
    Ronceray N., You Y., Glushkov E., Lihter M., Rehl B., Chen T-H., Nam G-H., Watanabe K., Taniguchi T., Roke S., Keerthi A., Comtet J., Radha B. et Radenovic A., Liquid-activated quantum emission from native hBN defects for nanofluidic sensing, 2022.

    Aleksandra Radenovic

    Prof. Aleksandra Radenovic is a full professor of biological engineering at the École Polytechnique Fédérale de Lausanne (EPFL) She serves as the Head of the Laboratory of Nanoscale Biology and is a renowned expert in the field of single-molecule biophysics. Professor Radenovic received her Ph.D. in Biophysics from the University of Lausanne (Switzerland) in 2003, following her attainment of a Msc. in Physics from the University of Zagreb (Croatia) in 2000. The research conducted by her laboratory has received numerous prestigious grants and awards, including the European Research Council (ERC) Starting Grant in 2010, the SNF Backup scheme Consolidator Grant in 2015, the CCMX materials challenge award in 2016, and the Advanced ERC grant in 2020. Her research interests focus on nanofluidics and developing techniques and methodologies that utilize optical imaging, nanopore sensing, and single-molecule manipulation to study the behavior of individual biological molecules and complexes. These studies are conducted both in vitro and within living cells, providing insights into the underlying mechanisms of cellular processes.

    • 50 min
    Colloque - La nanofluidique à la croisée des chemins : Soft Nanofluidics

    Colloque - La nanofluidique à la croisée des chemins : Soft Nanofluidics

    Innovation technologique Liliane Bettencourt (2022-2023) - Lydéric Bocquet
    Collège de France
    Année 2022-2023

    Colloque - La nanofluidique à la croisée des chemins : Soft Nanofluidics

    I will present some recent results on controlled experiments probing fluidic transport at the nanoscale. In particular, I will show how we use alternative routes to
    molecular confinement, which circumvents demanding nanofabrication steps, partially releases material constraints, and offers continuously tunable molecular confinements. These soft-matter-inspired approaches use wetting film that spontaneously condenses on a substrate or soap films that are intrinsically nanometric as versatile and tunable nanofluidic channels.

    Anne-Laure Biance

    Depuis 2006 : Chargée de recherche puis directrice de recherche au CNRS.
    2004 : Thèse de l'université Paris 6 sous la direction de D. Quéré, réalisé au LPMC, Collège de France.
    2013 : HDR, Université Lyon 1.

    • 21 min
    Colloque - La nanofluidique à la croisée des chemins : Computer Explorations of Soft Flowing Matter

    Colloque - La nanofluidique à la croisée des chemins : Computer Explorations of Soft Flowing Matter

    Innovation technologique Liliane Bettencourt (2022-2023) - Lydéric Bocquet
    Collège de France
    Année 2022-2023

    Colloque - La nanofluidique à la croisée des chemins : Computer Explorations of Soft Flowing Matter

    Major progress in experimental micro-nanofluidics over the last decades has spawned the opportunity to explore new states of droplet-based soft flowing matter, such as microfluidic crystals, high-density confined emulsions, bijels, as well as various types of soft granular flows. These novel states of soft matter raise fundamental challenges to non-equilibrium statistical physics mostly on account of strong nonlinear and nonlocal effects, which set their mechanical and rheological properties far apart from those of the three fundamental states of matter (solid,liquid and gas) they are made of. In this talk, I shall present selected computer simulations and machine-learning algorithms which help shedding light into these fascinating states of soft flowing matter and lay the ground for future applications in science and engineering.

    Sauro Succi

    Dr Succi holds a degree in Nuclear Engineering from the University of Bologna and a PhD in plasma physics from the Ecole Polytechnique Federale de Lausanne. He currently serves as Senior Research Executive and Principal Investigator at the Center for Life Nano-Neuro Sciences at la Sapienza of the Italian Institute of Technology. He is also a Research Affiliate of the Physics Department of Harvard University and a Honorary Professor at the University College London. His research activity covers a broad range of topics related to complex states of flowing matter, such as thermonuclear plasmas, fluid turbulence, micro and nanofluidics, soft matter as well as quantum and subnuclear fluids. He is best known for his contributions to the early inception, development and application of the Lattice Boltzmann method, for which he has received a number of international awards, including the APS 2017 Aneesur Rahman Prize in Computational Physics, the 2019 CECAM Berni Alder Prize for exceptional contributions to the microscopic simulation of matter. He is an elected member of Academia Europaea (2015) and in 2017 he has been awarded the ERC-AdG "Computational design of mesoscale porous materials".

    • 27 min
    Colloque - La nanofluidique à la croisée des chemins : Condensed Matter at Nanoscale

    Colloque - La nanofluidique à la croisée des chemins : Condensed Matter at Nanoscale

    Innovation technologique Liliane Bettencourt (2022-2023) - Lydéric Bocquet
    Collège de France
    Année 2022-2023

    Colloque - La nanofluidique à la croisée des chemins : Condensed Matter at Nanoscale

    Scanning Probe Microscopy is a powerful tool for the investigation of the properties of confined systems. In this presentation we will discuss how soft and hard condensed matter undergo to a dramatic phase change when confined at the nanoscale and we will investigate the complex coupling between fluids and bidimensional materials.

    Alessandro Siria

    Alessandro Siria is a CNRS researcher and Professor at École normale supérieure. His research interests are at the interface between soft matter and nano science. Awarded with 2 European Research Council grants, he is co-founder of 4 start-up companies aiming at the industrialisation of novel nanofluidics functionaries.

    • 26 min
    Colloque - La nanofluidique à la croisée des chemins : Structure and Dynamics of Interfacial Water

    Colloque - La nanofluidique à la croisée des chemins : Structure and Dynamics of Interfacial Water

    Innovation technologique Liliane Bettencourt (2022-2023) - Lydéric Bocquet
    Collège de France
    Année 2022-2023

    Colloque - La nanofluidique à la croisée des chemins : Structure and Dynamics of Interfacial Water

    There are few molecules, if any, more important than water. However, remarkably little is known about how it interacts with surfaces, particularly at the molecular level. In this talk I will discuss some of our recent work on the application and development of a variety of state of the art computer simulation methods to better understand the structure and dynamics of water at surfaces and under confinement. Specific topics discussed will include work carried out in collaboration with experimentalists to understand the growth and diffusion of ice clusters at metal surfaces, heterogenous ice nucleation, and water confined within 1- and 2-dimensional membranes. Methodological developments aimed at providing more accurate treatments of adsorption on and bonding within solids will also be covered, as well as an efficient machine learning strategy for simulating complex aqueous interfaces.

    Angelos Michaelides

    Angelos Michaelides obtained a PhD in Theoretical Chemistry in 2000 from The Queen's University of Belfast. Following this, he worked as a post-doctoral research associate and junior research fellow at the University of Cambridge and then at the Fritz Haber Institute, Berlin as an Alexander von Humboldt research fellow and subsequently research group leader. Between 2006 and 2020 he was at University College London where he was Director and Co-Director of the Thomas Young Centre: The London Centre for the Theory and Simulation of Materials and the founding Director of the Materials and Molecular Modelling Hub. Since 2020 he has been the 1968 Professor of Chemistry at the University of Cambridge.

    • 41 min

Avis

5,0 sur 5
2 notes

2 notes

Classement des podcasts dans Éducation

Ma parole
France Culture
"Comment tu fais ?" by Laury Thilleman
Laury Thilleman
Ces questions que tout le monde se pose
Maud Ankaoua
La vie suffit !
Chloé Bloom
Change ma vie : Outils pour l'esprit
Clotilde Dusoulier
Choses à Savoir
Choses à Savoir