14本のエピソード

Capitol Hill presentations by experts in the field of climate change, hosted by the American Meteorological Society's Environmental Policy Program.

Producer: Larry Gillick, Assistant Professor, Digital and Broadcast Media, Shenandoah University

AMS Climate Change Video - Environmental Science Seminar Series (ESSS‪)‬ American Meteorological Society ESSS

    • 科学

Capitol Hill presentations by experts in the field of climate change, hosted by the American Meteorological Society's Environmental Policy Program.

Producer: Larry Gillick, Assistant Professor, Digital and Broadcast Media, Shenandoah University

    • video
    Assessing Greenhouse Gas Emissions Reduction Policies: New Science Tools in the Service of Policy and Negotiations

    Assessing Greenhouse Gas Emissions Reduction Policies: New Science Tools in the Service of Policy and Negotiations

    New Tools for Assessing GHG Reduction Policies
    As negotiations towards a post-Kyoto agreement on Greenhouse Gas (GHG) emissions intensify, there is a pressing need for flexible, user-friendly analytical tools to quickly yet reliably assess the impacts of the rapidly evolving policy proposals for emissions of greenhouse gases and their impact on the global climate. Such tools would enable negotiators, policymakers and other stakeholders, including the general public, to understand the relationships among proposals for emissions reductions, concentrations of GHGs in the atmosphere, and the resulting changes in climate.

    The new Climate-Rapid Overview And Decision Support Simulator (C-ROADS) developed by MIT, the Sustainability Institute, and Ventana Systems, in partnership with the Heinz Center, is just such a tool. C-ROADS is a user-friendly, interactive computer model of the climate system consistent with the best available science, data and observations.

    An international scientific review panel, headed by Dr. Robert Watson, former chair of the IPCC, finds that the C-ROADS model “reproduces the response properties of state-of- the-art three dimensional climate models very well” and concludes “Given the model’s capabilities and its close alignment with a range of scenarios published in the Fourth Assessment Report of the IPCC we support its widespread use among policy makers and the general public.”

    Biographies
    Dr. John D. Sterman is the Jay W. Forrester Professor of Management at the MIT Sloan School of Management, Professor of Engineering Systems and Director of MIT's System Dynamics Group. He is an expert on nonlinear dynamics particularly as applied in economic and socio-technical systems including energy, the environment and climate policy.

    Prof. Sterman's research centers on improving managerial decision making in complex systems. He has pioneered the development of "management flight simulators" of economic, environmental, and organizational systems. These flight simulators are now used by corporations and universities around the world. His recent research includes studies assessing public understanding of global climate change, the development of management flight simulators to assist climate policy design, and the development of markets for alternative fuel vehicles that are sustainable not only ecologically but economically.

    Dr. Robert W. Corell, Vice President of Programs for The H. John Heinz III Center for Science, Economics, and the Environment’s Global Change Director is also a Council Member for the Global Energy Assessment and a Senior Policy Fellow at the Policy Program of the American Meteorological Society. Dr. Corell also shared in the Nobel Peace Prize Award in 2007 for his extensive work with the IPCC assessments. In 2005, he completed an appointment as a Senior Research Fellow at the Belfer Center for Science and International Affairs of the Kennedy School for Government at Harvard University.

    Dr. Corell is actively engaged in research concerned with both the science of global change and with the interface between science and public policy, particularly research activities that are focused on global and regional climate change and related environmental issues. He currently chairs an international initiative, the overall goal of which is to strengthening the negotiating framework intended to prevent dangerous anthropogenic interference with the climate system, central to which is the development and use of analytical tools that employ real-time climate simulations. Dr. Corell also chairs the Arctic Climate Impact Assessment as well as an 18-country international planning effort to outline the major Arctic-region research challenges for the decade or so ahead. He recently led an international strategic planning group that developed strategies and programs designed to merge science, technology and innovation in the service of sustainable development.

    • 1 時間34分
    • video
    Two Engineering Measures to Reduce Global Warming: Injecting Particles into the Atmosphere and "Clean" Coal

    Two Engineering Measures to Reduce Global Warming: Injecting Particles into the Atmosphere and "Clean" Coal

    Managing Incoming Solar Radiation

    Largely out of concern that society may fall short of taking large and rapid enough measures to effectively contain the problem of global warming, two prominent atmospheric scientists - Paul Crutzen, who won a Nobel Prize in chemistry in 1995, and Tom Wigley, a senior scientist at the National Center for Atmospheric Research - published papers in 2006, suggesting that society might consider using geoengineering schemes to identify a temporarily "fix" to the problem. The schemes were suggested as an interim measure intended to buy time to prevent the worst damage from global warming while society used that time to identify and deploy measures to address the root cause of the problem. Such suggestions however, are not new.

    The concept of geoengineering - deliberately using technology to modify Earth's environment - has been discussed in the context of climate change since at least 1960. Over the years, proposals have included everything from carbon sequestration through ocean fertilization to damming the oceans. Crutzen and Wigley argued that geoengineering schemes, if done continuously, could reduce global warming enough to buy society time to address mitigation. However, geoengineering schemes may not be the answer. And in fact, such measures have the potential to create more problems than they solve.

    In particular, Crutzen and Wigley focused on blocking incoming solar radiation, an idea that has generated much interest in the press and the scientific community. Nature offers an example of how to do this. Volcanic eruptions cool the climate for up to a couple of years by injecting precursors to sulfate aerosol particles into the stratosphere, which has the effect of temporarily blocking incoming sunlight.

    Clean Coal Technology and Future Prospects

    Clean coal technologies are real, commonly used in commercial industrial gasification and likely essential to reduce CO2 due to the fast growing use of coal worldwide, especially in China. Commercial example of clean coal technology in the USA is the 25 year-old coal to synthetic natural gas (SNG) plant in North Dakota where all of the CO2 is captured and most is geologically storage for use in enhanced oil recovery (EOR) in Canada.

    The key issue is expanding clean coal technologies into coal-based electric power generation. This expansion presents additional challenges - more technology options and higher cost of CO2 capture than for industrial gasification. This also requires large-scale demonstration of all three CO2 capture technology options: pre, post and oxygen combustion. In time, the CO2 capture and storage costs will be reduced by both “learning by doing” and developing advanced technologies already moving in to small-scale demonstrations.

    Biographies

    Dr. Alan Robock is a Distinguished Professor of atmospheric science in the Department of Environmental Sciences at Rutgers University and the associate director of its Center for Environmental Prediction. He also directs the Rutgers Undergraduate Meteorology Program. He graduated from the University of Wisconsin, Madison, in 1970 with a B.A. in Meteorology, and from the Massachusetts Institute of Technology with an S.M. in 1974 and Ph.D. in 1977 in Meteorology. Before graduate school, he served as a Peace Corps Volunteer in the Philippines. He was a professor at the University of Maryland, 1977-1997, and the State Climatologist of Maryland, 1991-1997, before coming to Rutgers.

    Dale Simbeck joined SFA Pacific in 1980 as a founding partner. His principal activities involve technical, economic and market assessments of energy and environmental technologies for the major international energy companies. This work includes electric power generation, heavy oil upgrading, emission controls and synthesis gas production plus utilization.

    • 1 時間28分
    • video
    Ecosystem Health in a Climatically-Altered World - Is 'Species Rescue' part of the Prognosis for the Future?

    Ecosystem Health in a Climatically-Altered World - Is 'Species Rescue' part of the Prognosis for the Future?

    Impacts of Recent Climate Change: Current Responses and Future Projections for Wild Ecosystems

    Observed changes in natural systems, largely over the past century, indicate a clear global climate change signal. Even in the face of apparently dominating forces, such as direct, human-driven habitat destruction and alteration, this climate fingerprint implicates global climate change as a new and important driving force on wild plants and animals. Patterns across taxonomic groups are remarkably similar. Large poleward and upward range shifts associated with recent global climate change have been documented in a diversity of species. Likewise, significant trends towards earlier spring events have been documented in plants and animals across North America, Europe and Asia. These changes in species’ distributions and timing have been linked with regional climate warming for many species based on basic research and on long-term historical records. Our recent estimate is that about half of all wild species have responded to regional warming trends of 1-3° C over the past century, with strongest responses over the past 30 years.

    In the Third Assessment Report of IPCC (2001), we predicted that species restricted to extreme environments, such as mountaintops, the Arctic and Antarctic, would be most sensitive to small levels of warming and, indeed, these areas are showing the first signs of species declines and extinctions. Range-restricted species, particularly polar and mountaintop species, are showing severe range contractions in response to recent climate change. Tropical coral reefs and sea ice specialists have been most negatively affected, with indications that cloud forest amphibians are also highly vulnerable. New analyses indicate large differences in magnitude of spring advancement between major taxonomic groups, suggesting that normal interactions among species, such as flowers and the insects that pollinate them may become disrupted. Evolutionary adaptations to warmer conditions have occurred at the local, population level, but observed genetic shifts are limited. There is no indication that novel traits are appearing that would allow species to exist under more extreme climatic conditions than they currently live in.

    Biography

    Dr. Camille Parmesan received her Ph.D. in Biological Sciences from the University of Texas at Austin in 1995. She then took a post-doctoral fellowship at the National Center for Ecological Analysis and Synthesis in Santa Barbara, California. She is currently an Associate Professor in Integrative Biology at the University of Texas at Austin.

    Dr. Parmesan’s early research spanned multiple aspects of the behavior, ecology and evolution of insect/plant interactions in natural systems. Since 1992, however, the focus of her work has been on biological impacts of anthropogenic climate change in natural systems.

    The intensification of global warming as an international issue led Dr. Parmesan into the interface of policy and science. She has given presentations for White House and Congressional representatives, has been involved in several U.S. and international assessments of climate change impacts, and has provided formal testimonies for the US House Select Committee on Energy Independence and Global Warming, as well as the Texas Senate Natural Resources Committee. She has also been active in climate change programs for many international conservation organizations, such as IUCN (the International Union for the Conservation of Nature), the WWF (World Wildlife Fund), and the National Wildlife Federation, and served on the Science Council of the Nature Conservancy. She was a Lead Author and Contributing author of the Intergovernmental Panel on Climate Change (IPCC) Third Assessment Report (2001), as well as Reviewer and Co-author of the Uncertainty Guidance Report for the IPCC Fourth Assessment Report (2007). IPCC and its participants were awarded the Nobel Peace Prize in 2007.

    • 1 時間17分
    • video
    Accelerating Atmospheric CO2 Growth from Economic Activity, Carbon Intensity, and Efficiency of Natural Carbon Sinks

    Accelerating Atmospheric CO2 Growth from Economic Activity, Carbon Intensity, and Efficiency of Natural Carbon Sinks

    The increase in atmospheric carbon dioxide (CO2) is the single largest human perturbation of the climate system. Its rate of change reflects the balance between human-driven carbon emissions and the dynamics of a number of terrestrial and ocean processes that remove or emit CO2. It is the long term evolution of this balance that will determine to a large extent the speed and magnitude of climate change and the mitigation requirements to stabilize atmospheric CO2 concentrations at any given level. Dr. Canadell will present the most recent trends in global carbon sources and sinks, updated for the first time to the year 2007, with particularly focus on major shifts occurring since 2000. Dr. Canadell’s research indicates that the underlying drivers of changes in atmospheric CO2 growth include: i) increased human-induced carbon emissions, ii) stagnation of the carbon intensity of the global economy, and iii) decreased efficiency of natural carbon sinks.

    New Estimates of Carbon Storage in Arctic Soils and Implications in a Changing Environment

    The Arctic represents approximately 13% of the total land area of the Earth, and arctic tundra occupies roughly 5 million square kilometers. Arctic tundra soils represent a major storage pool for dead organic carbon, largely due to cold temperatures and saturated soils in many locations that prevent its decomposition. Prior estimates of carbon stored in tundra soils range from 20-29 kg of soil organic carbon (SOC) per square meter. These estimates however, were based on data collected from only the top 20-40 cm of soil, and were sometimes extrapolated to 100 cm. It is our understanding that large quantities of SOC are stored at greater depths, through the annual freezing and thawing motion of the soils (cryoturbation), and potentially frozen in the permafrost.

    Recent detailed analysis of Arctic soils by Dr. Epstein and his colleagues found that soil organic carbon values averaged 34.8 kg per square meter, representing an increase of approximately 40% over the prior estimates. Additionally, 38% of the total soil organic carbon was found in the permafrost.

    Past, Present and Future Changes in Permafrost and Implications for a Changing Carbon Budget

    Presence of permafrost is one of the major factors that turn northern ecosystems into an efficient natural carbon sink. Moreover, a significant amount of carbon is sequestered in the upper several meters to several tens of meters of permafrost. Because of that, the appearance and disappearance of permafrost within the northern landscapes have a direct impact on the efficiency of northern ecosystems to sequester carbon in soil, both near the ground surface and in deeper soil layers. Recent changes in permafrost may potentially transform the northern ecosystems from an effective carbon sink to a significant source of carbon for the Earth’s atmosphere. Additional emissions of carbon from thawing permafrost may be in the form of CO2 or methane depending upon specific local conditions.

    Dr. Romanovsky will present information on changes in terrestrial and subsea permafrost in the past during the last glacial-interglacial cycle and on the most recent trends in permafrost in the Northern Hemisphere. He will further discuss the potential impact of these changes in permafrost (including a short discussion on potential changes in methane gas clathrates) on the global carbon cycle. Dr. Romanovsky’s research suggests that permafrost in North America and Northern Eurasia shows a substantial warming during the last 20 to 30 years. The magnitude of warming varied with location, but was typically from 0.5 to 2°C at 15 meters depth. Thawing of the Little Ice Age permafrost is on-going at many locations. There are some indications that the late-Holocene permafrost started to thaw at some specific undisturbed locations in the European Northeast, in the Northwest and East Siberia, and in Alaska.

    • 1 時間53分
    • video
    Coping with Climate Change: Gulf Coast Transportation and New York City Waterworks

    Coping with Climate Change: Gulf Coast Transportation and New York City Waterworks

    Gulf Coast Transportation: Coping with the Future

    Climate affects the design, construction, safety, operations, and maintenance of transportation infrastructure and systems. The prospect of a changing climate raises critical questions regarding how alterations in temperature, precipitation, storm events, and other aspects of the climate could affect the nation’s roads, airports, rail, transit systems, pipelines, ports, and waterways in the region of the U.S. central Gulf Coast between Galveston, Texas and Mobile, Alabama. This region contains multimodal transportation infrastructure that is critical to regional and national transportation services. More broadly, what happens in the Gulf region will no doubt, have ripple effects nationwide and internationally, as was evident in the aftermath of hurricane Katrina.

    New York City: Preparing for Climate Change

    New York City (NYC) represents one of the first substantial efforts to undertake climate-change planning for infrastructure changes in a large urban area. Notable characteristics of the NYC system are that it is a mature infrastructure system, that its managers are skilled at dealing with existing hydrologic variability, and that there are many potential adaptations to the risk of climate change in the NYC water supply, sewer, and wastewater treatment systems. Capitalizing on this expertise and experience, the work of the Climate Change Task Force of the NYC Department of Environmental Protection, has focused on the water supply, sewer, and wastewater treatment systems of NYC.

    The Task Force included representatives from all of the operating and planning bureaus in NYCDEP along with experts from Columbia University’s Center for Climate Systems Research (CCSR) and other universities and engineering firms. A key element of the process was that it was agency-wide, allowing the development of an integrated climate change program throughout the entire organization.

    Biographies

    Michael J. Savonis has 25 years of experience in transportation policy, with extensive expertise in air quality and emerging environmental issues. He has served as Air Quality Team Leader at the Federal Highway Administration (FHWA), since 1996. For the past 16 years, Mr. Savonis has overseen the Congestion Mitigation and Air Quality Improvement Program which invests more than $1.5 billion annually to improve air quality. He directs FHWA’s transportation / air quality policy development, research program, and public education. He received DOT’s Silver Medal in 1997 and FHWA’s Superior Achievement Award in 2004.

    Dr. Cynthia Rosenzweig is a Senior Research Scientist at the Goddard Institute for Space Studies at Columbia University. Her primary research involves the development of interdisciplinary methodologies by which to assess the potential impacts of and adaptations to global environmental change. She has joined impact models with global and regional climate models to predict future outcomes of both land-based and urban systems under altered climate conditions. Advances include the development of climate change scenarios for impact and adaptation analysis, and the application of impact models at relevant spatial and temporal scales for regional and national assessments. Recognizing that the complex interactions engendered by global environmental change can best be understood by coordinated teams of experts, Dr. Rosenzweig has organized and led large-scale interdisciplinary, national, and international studies of climate change impacts and adaptation. She co-led the Metropolitan East Coast Regional Assessment of the U.S. National Assessment of the Potential Consequences of Climate Variability and Change, sponsored by the U.S. Global Change Research Program, and was the lead scientist on the New York City Department of Environmental Protection Climate Change Task Force.

    • 1 時間36分
    • video
    Keynote Address - AMS workshop on Federal Climate Policy

    Keynote Address - AMS workshop on Federal Climate Policy

    Herman Daly, Ph.D., delivers the keynote address the recent AMS workshop on Federal Climate Policy. He explores the distinction between economic growth —a quantitative increase in size that is constrained by the physical limits of the Earth system—and economic development—a qualitative improvement in our state of being. In so doing, he helps identify design principles for climate policy that can enhance environmental protection, benefit the economy, and promote political feasibility.

    Daly is a professor in the School of Public Affairs at the University of Maryland. Previously he served as Senior Economist in the Environment Department at the World Bank, where he helped develop policy guidelines related to sustainable development.

    He has received numerous awards including the Honorary Right Livelihood Award, Sweden's alternative to the Nobel Prize.

    • 38分

科学のトップPodcast

超リアルな行動心理学
FERMONDO
サイエントーク
研究者レンとOLエマ
佐々木亮の宇宙ばなし
佐々木亮
科学のラジオ ~Radio Scientia~
ニッポン放送
サイエンマニア
研究者レン from サイエントーク
Nature Podcast
Springer Nature Limited