Experiencing Data w/ Brian T. O’Neill (UX for AI Data Products, SAAS Analytics, Data Product Management)

Brian T. O’Neill from Designing for Analytics
Experiencing Data w/ Brian T. O’Neill  (UX for AI Data Products, SAAS Analytics, Data Product Management)

Are you an enterprise data or product leader seeking to increase the user adoption and business value of your ML/AI and analytical data products? While it is easier than ever to create ML and analytics from a technology perspective, do you find that getting users to use, buyers to buy, and stakeholders to make informed decisions with data remains challenging? If you lead an enterprise data team, have you heard that a ”data product” approach can help—but you’re not sure what that means, or whether software product management and UX design principles can really change consumption of ML and analytics? My name is Brian T. O’Neill, and on Experiencing Data—one of the top 2% of podcasts in the world—I offer you a consulting product designer’s perspective on why simply creating ML models and analytics dashboards aren’t sufficient to routinely produce outcomes for your users, customers, and stakeholders. My goal is to help you design more useful, usable, and delightful data products by better understanding your users, customers, and business sponsor’s needs. After all, you can’t produce business value with data if the humans in the loop can’t or won’t use your solutions. Every 2 weeks, I release solo episodes and interviews with chief data officers, data product management leaders, and top UX design and research professionals working at the intersection of ML/AI, analytics, design and product—and now, I’m inviting you to join the #ExperiencingData listenership. Transcripts, 1-page summaries and quotes available at: https://designingforanalytics.com/ed ABOUT THE HOST Brian T. O’Neill is the Founder and Principal of Designing for Analytics, an independent consultancy helping technology leaders turn their data into valuable data products. He is also the founder of The Data Product Leadership Community. For over 25 years, he has worked with companies including DellEMC, Tripadvisor, Fidelity, NetApp, Roche, Abbvie, and several SAAS startups. He has spoken internationally, giving talks at O’Reilly Strata, Enterprise Data World, the International Institute for Analytics Symposium, Predictive Analytics World, and Boston College. Brian also hosts the highly-rated podcast Experiencing Data, advises students in MIT’s Sandbox Innovation Fund and has been published by O’Reilly Media. He is also a professional percussionist who has backed up artists like The Who and Donna Summer, and he’s graced the stages of Carnegie Hall and The Kennedy Center. Subscribe to Brian’s Insights mailing list at https://designingforanalytics.com/list.

  1. DEC 10

    158 - From Resistance to Reliance: Designing Data Products for Non-Believers with Anna Jacobson of Operator Collective

    After getting started in construction management, Anna Jacobson traded in the hard hat for the world of data products and operations at a VC company. Anna, who has a structural engineering undergrad and a masters in data science, is also a Founding Member of the Data Product Leadership Community (DPLC). However, her work with data products is more “accidental” and is just part of her responsibility at Operator Collective. Nonetheless, Anna had a lot to share about building data products, dashboards, and insights for users—including resistant ones!      That resistance is precisely what I wanted to talk to her about in this episode: how does Anna get somebody to adopt a data product to which they may be apathetic, if not completely resistant?     At the end of the episode, Anna gives us a sneak peek at what she’s planning to talk about in our final 2024 live DPLC group discussion coming up on 12/18/2024.     We covered: (1:17) Anna's background and how she got involved with data products (3:32) The ways Anna applied her experiences working in construction management to her current work with data products at a VC firm (5:32) Explaining one of the main data products she works on at Operator Collective (9:55) How Anna defines success for her data products (15:21) The process of designing data products for "non-believers" (21:08) How to think about "super users" and their feedback on a data product (27:11) How a company's cultural problems can be a blocker for product adoption (38:21) A preview of what you can expect from Anna's talk and live group discussion in the DPLC (40:24) Closing thoughts from Anna (42:54) Where you can find more from Anna     Quotes from Today’s Episode “People working with data products are always thinking about how to [gain user adoption of their product]... I can’t think of a single one where [all users] were immediately on board. There’s a lot to unpack in what it takes to get non-believers on board, and it’s something that none of us ever get any training on. You just learn through experience, and it’s not something that most people took a class on in college. All of the social science around what we do gets really passed over for all the technical stuff. It takes thinking through and understanding where different [users] are coming from, and [understanding] that my perspective alone is not enough to make it happen.” - Anna Jacobson (16:00) ​​“If you only bring together the super users and don’t try to get feedback from the average user, you are missing the perspective of the person who isn’t passionate about the product. A non-believer is someone who is just over capacity. They may be very hard-working, they may be very smart, but they just don’t have the bandwidth for new things. That’s something that has to be overcome when you’re putting a new product into place.” - Anna Jacobson (22:35) “If a company can’t find budget to support [a data product], that’s a cultural decision. It’s not a financial decision. They find the money for the things that they care about. Solving the technology challenge is pretty easy, but you have to have a company that’s motivated to do that. If you want to implement something new, be it a data product or any change in an organization, identifying the cultural barriers and figuring out how to bring [people in an organization] on board is the crux of it. The money and the technology can be found.” - Anna Jacobson (27:58) “I think people are actually very bad at explaining what they want, and asking people what they want is not helpful. If you ask people what they want to do, then I think you have a shot at being able to build a product that does [what they want]. The executive sponsors typically have a very different perspective on what the product [should be] than the users do. If all of your information is getting filtered through the executive sponsor, you’re probably not getting the full picture” - Anna Jacobson (31:45) “You want to define what the opport

    44 min
  2. NOV 26

    157 - How this materials science SAAS company brings PM+UX+data science together to help materials scientists accelerate R&D

    R&D for materials-based products can be expensive, because improving a product’s materials takes a lot of experimentation that historically has been slow to execute. In traditional labs, you might change one variable, re-run your experiment, and see if the data shows improvements in your desired attributes (e.g. strength, shininess, texture/feel, power retention, temperature, stability, etc.). However, today, there is a way to leverage machine learning and AI to reduce the number of experiments a material scientist needs to run to gain the improvements they seek. Materials scientists spend a lot of time in the lab—away from a computer screen—so how do you design a desirable informatics SAAS that actually works, and fits into the workflow of these end users?         As the Chief Product Officer at MaterialsZone, Ori Yudilevich came on Experiencing Data with me to talk about this challenge and how his PM, UX, and data science teams work together to produce a SAAS product that makes the benefits of materials informatics so valuable that materials scientists depend on their solution to be time and cost-efficient with their R&D efforts.        We covered: (0:45) Explaining what Ori does at MaterialZone and who their product serves (2:28) How Ori and his team help make material science testing more efficient through their SAAS product (9:37) How they design a UX that can work across various scientific domains (14:08) How “doing product” at MaterialsZone matured over the past five years (17:01) Explaining the "Wizard of Oz" product development technique (21:09) The importance of integrating UX designers into the "Wizard of Oz" (23:52) The challenges MaterialZone faces when trying to get users to adopt to their product (32:42) Advice Ori would've given himself five years ago (33:53) Where you can find more from MaterialsZone and Ori     Quotes from Today’s Episode “The fascinating thing about materials science is that you have this variety of domains, but all of these things follow the same process. One of the problems [consumer goods companies] face is that they have to do lengthy testing of their products. This is something you can use machine learning to shorten. [Product research] is an iterative process that typically takes a long time. Using your data effectively and using machine learning to predict what can happen, what’s better to try out, and what will reduce costs can accelerate time to market.” - Ori Yudilevich (3:47) “The difference [in time spent testing a product] can be up to 70% [i.e. you can run 70% fewer experiments using ML.]  That [also] means 70% less resources you’re using. Under the ‘old system’ of trial and error, you were just trying out a lot of things. The human mind cannot process a large number of parameters at once, so [a materials scientist] would just start playing only with [one parameter at a time]. You’ll have many experiments where you just try to optimize [for] one parameter, but then you might have 20, 30, or 100 more [to test]. Using machine learning, you can change a lot of parameters at once. The model can learn what has the most effect, what has a positive effect, and what has a negative effect. The differences can be really huge.” - Ori Yudilevich (5:50) “Once you go deeper into a use case, you see that there are a lot of differences. The types of raw materials, the data structure, the quantity of data, etc. For example, with batteries, you have lots of data because you can test hundreds all at once. Whereas with something like ceramics, you don’t try so many [experiments]. You just can’t. It’s much slower. You can’t do so many [experiments] in parallel. You have much less data. Your models are different, and your data structure is different. But there’s also quite a lot of commonality because you’re storing the data. In the end, you have each domain, some raw materials, formulations, tests that you’re doing, and different statistical plots that are very common.” - Ori

    35 min
  3. NOV 14

    156-The Challenges of Bringing UX Design and Data Science Together to Make Successful Pharma Data Products with Jeremy Forman

    Jeremy Forman joins us to open up about the hurdles– and successes that come with building data products for pharmaceutical companies. Although he’s new to Pfizer, Jeremy has years of experience leading data teams at organizations like Seagen and the Bill and Melinda Gates Foundation. He currently serves in a more specialized role in Pfizer’s R&D department, building AI and analytical data products for scientists and researchers. .     Jeremy gave us a good luck at his team makeup, and in particular, how his data product analysts and UX designers work with pharmaceutical scientists and domain experts to build data-driven solutions..  We talked a good deal about how and when UX design plays a role in Pfizer’s data products, including a GenAI-based application they recently launched internally.       Highlights/ Skip to: (1:26) Jeremy's background in analytics and transition into working for Pfizer (2:42) Building an effective AI analytics and data team for pharma R&D (5:20) How Pfizer finds data products managers (8:03) Jeremy's philosophy behind building data products and how he adapts it to Pfizer (12:32) The moment Jeremy heard a Pfizer end-user use product management research language and why it mattered (13:55) How Jeremy's technical team members work with UX designers (18:00) The challenges that come with producing data products in the medical field (23:02) How to justify spending the budget on UX design for data products (24:59) The results we've seen having UX design work on AI / GenAI products (25:53) What Jeremy learned at the  Bill & Melinda Gates Foundation with regards to UX and its impact on him now (28:22) Managing the "rough dance" between data science and UX (33:22) Breaking down Jeremy's GenAI application demo from CDIOQ (36:02) What would Jeremy prioritize right now if his team got additional funding (38:48) Advice Jeremy would have given himself 10 years ago (40:46) Where you can find more from Jeremy     Quotes from Today’s Episode “We have stream-aligned squads focused on specific areas such as regulatory, safety and quality, or oncology research. That’s so we can create functional career pathing and limit context switching and fragmentation. They can become experts in their particular area and build a culture within that small team. It’s difficult to build good [pharma] data products. You need to understand the domain you’re supporting. You can’t take somebody with a financial background and put them in an Omics situation. It just doesn’t work. And we have a lot of the scars, and the failures to prove that.” - Jeremy Forman (4:12) “You have to have the product mindset to deliver the value and the promise of AI data analytics. I think small, independent, autonomous, empowered squads with a product leader is the only way that you can iterate fast enough with [pharma data products].” - Jeremy Forman (8:46) “The biggest challenge is when we say data products. It means a lot of different things to a lot of different people, and it’s difficult to articulate what a data product is. Is it a view in a database? Is it a table? Is it a query? We’re all talking about it in different terms, and nobody’s actually delivering data products.” - Jeremy Forman (10:53) “I think when we’re talking about [data products] there’s some type of data asset that has value to an end-user, versus a report or an algorithm. I think it’s even hard for UX people to really understand how to think about an actual data product. I think it’s hard for people to conceptualize, how do we do design around that? It’s one of the areas I think I’ve seen the biggest challenges, and I think some of the areas we’ve learned the most. If you build a data product, it’s not accurate, and people are getting results that are incomplete… people will abandon it quickly.” - Jeremy Forman (15:56) “ I think that UX design and AI development or data science work is a magical partnership, but they often don’t know how to work with each ot

    42 min
  4. OCT 29

    155 - Understanding Human Engagement Risk When Designing AI and GenAI User Experiences

    The relationship between AI and ethics is both developing and delicate. On one hand, the GenAI advancements to date are impressive. On the other, extreme care needs to be taken as this tech continues to quickly become more commonplace in our lives. In today’s episode, Ovetta Sampson and I examine the crossroads ahead for designing AI and GenAI user experiences.     While professionals and the general public are eager to embrace new products, recent breakthroughs, etc.; we still need to have some guard rails in place. If we don’t, data can easily get mishandled, and people could get hurt. Ovetta possesses firsthand experience working on these issues as they sprout up. We look at who should be on a team designing an AI UX, exploring the risks associated with GenAI, ethics, and need to be thinking about going forward.     Highlights/ Skip to: (1:48) Ovetta's background and what she brings to Google’s Core ML group (6:03) How Ovetta and her team work with data scientists and engineers deep in the stack (9:09)  How AI is changing the front-end of applications (12:46) The type of people you should seek out to design your AI and LLM UXs (16:15) Explaining why we’re only at the very start of major GenAI breakthroughs (22:34) How GenAI tools will alter the roles and responsibilities of designers, developers, and product teams (31:11) The potential harms of carelessly deploying GenAI technology (42:09) Defining acceptable levels of risk when using GenAI in real-world applications (53:16) Closing thoughts from Ovetta and where you can find her     Quotes from Today’s Episode “If artificial intelligence is just another technology, why would we build entire policies and frameworks around it? The reason why we do that is because we realize there are some real thorny ethical issues [surrounding AI]. Who owns that data? Where does it come from? Data is created by people, and all people create data. That’s why companies have strong legal, compliance, and regulatory policies around [AI], how it’s built, and how it engages with people. Think about having a toddler and then training the toddler on everything in the Library of Congress and on the internet. Do you release that toddler into the world without guardrails? Probably not.” - Ovetta Sampson (10:03) “[When building a team] you should look for a diverse thinker who focuses on the limitations of this technology- not its capability. You need someone who understands that the end destination of that technology is an engagement with a human being.  You need somebody who understands how they engage with machines and digital products. You need that person to be passionate about testing various ways that relationships can evolve. When we go from execution on code to machine learning, we make a shift from [human] agency to a shared-agency relationship. The user and machine both have decision-making power. That’s the paradigm shift that [designers] need to understand. You want somebody who can keep that duality in their head as they’re testing product design.” - Ovetta Sampson (13:45) “We’re in for a huge taxonomy change. There are words that mean very specific definitions today. Software engineer. Designer. Technically skilled. Digital. Art. Craft. AI is changing all that. It’s changing what it means to be a software engineer. Machine learning used to be the purview of data scientists only, but with GenAI, all of that is baked in to Gemini. So, now you start at a checkpoint, and you’re like, all right, let’s go make an API, right? So, the skills, the understanding, the knowledge, the taxonomy even, how we talk about these things, how do we talk about the machine who speaks to us talks to us, who could create a podcast out of just voice memos?” - Ovetta Sampson (24:16) “We have to be very intentional [when building AI tools], and that’s the kind of folks you want on teams. [Designers] have to go and play scary scenarios. We have to do that. No designer wants to be “Negative Nancy,” but th

    56 min
  5. OCT 15

    154 - 10 Things Founders of B2B SAAS Analytics and AI Startups Get Wrong About DIY Product and UI/UX Design

    Sometimes DIY UI/UX design only gets you so far—and you know it’s time for outside help. One thing prospects from SAAS analytics and data-related product companies often ask me is how things are like in the other guy/gal’s backyard. They want to compare their situation to others like them. So, today, I want to share some of the common “themes” I see that usually are the root causes of what leads to a phone call with me.      By the time I am on the phone with most prospects who already have a product in market, they’re usually either having significant problems with 1 or more of the following: sales friction (product value is opaque); low adoption/renewal worries (user apathy), customer complaints about UI/UX being hard to use; velocity (team is doing tons of work, but leader isn’t seeing progress)—and the like.      I’m hoping today’s episode will explain some of the root causes that may lead to these issues — so you can avoid them in your data product building work!       Highlights/ Skip to: (10:47) Design != "front-end development" or analyst work (12:34)  Liking doing UI/UX/viz design work vs. knowing  (15:04)  When a leader sees lots of work being done, but the UX/design isn’t progressing (17:31) Your product’s UX needs to convey some magic IP/special sauce…but it isn’t (20:25) Understanding the tradeoffs of using libraries, templates, and other solution’s design as a foundation for your own  (25:28) The sunk cost bias associated with POCs and “we’ll iterate on it” (28:31) Relying on UI/UX "customization" to please all customers (31:26) The hidden costs of abstraction of system objects, UI components, etc.  to make life easier for engineering and technical teams (32:32) Believing you’ll know the design is good “when you see it” (and what you don’t know you don’t know) (36:43) Believing that because the data science/AI/ML modeling under your solution was, accurate, difficult, and/or expensive makes it automatically worth paying for      Quotes from Today’s Episode The challenge is often not knowing what you don’t know about a project. We often end up focusing on building the tech [and rushing it out] so we can get some feedback on it… but product is not about getting it out there so we can get feedback. The goal of doing product well is to produce value, benefits, or outcomes. Learning is important, but that’s not what the objective is. The objective is benefits creation. (5:47) When we start doing design on a project that’s not design actionable, we build debt and sometimes can hurt the process of design. If you start designing your product with an entire green space, no direction, and no constraints, the chance of you shipping a good v1 is small. Your product strategy needs to be design-actionable for the team to properly execute against it. (19:19) While you don’t need to always start at zero with your UI/UX design, what are the parts of your product or application that do make sense to borrow , “steal” and cheat from? And when does it not?  It takes skill to know when you should be breaking the rules or conventions. Shortcuts often don’t produce outsized results—unless you know what a good shortcut looks like.  (22:28) A proof of concept is not a minimum valuable product. There’s a difference between proving the tech can work and making it into a product that’s so valuable, someone would exchange money for it because it’s so useful to them. Whatever that value is, these are two different things. (26:40) Trying to do a little bit for everybody [through excessive customization] can often result in nobody understanding the value or utility of your solution. Customization can hide the fact the team has decided not to make difficult choices. If you’re coming into a crowded space… it’s like’y not going to be a compelling reason to [convince customers to switch to your solution]. Customization can be a tax, not a benefit. (29:26) Watch for the sunk cost bias [in product development]. [Buyers] don’t care how the s

    45 min
  6. OCT 1

    153 - What Impressed Me About How John Felushko Does Product and UX at the Analytics SAAS Company, LabStats

    In today’s episode, I’m joined by John Felushko, a product manager at LabStats who impressed me after we recently had a 1x1 call together. John and his team have developed a successful product that helps universities track and optimize their software and hardware usage so schools make smart investments. However, John also shares how culture and value are very tied together—and why their product isn’t a fit for every school, and every country. John shares how important  customer relationships are , how his team designs great analytics user experiences, how they do user research, and what he learned making high-end winter sports products that’s relevant to leading a SAAS analytics product. Combined with John’s background in history and the political economy of finance, John paints some very colorful stories about what they’re getting right—and how they’ve course corrected over the years at LabStats.      Highlights/ Skip to: (0:46) What is the LabStats product  (2:59) Orienting analytics around customer value instead of IT/data (5:51) "Producer of Persistently Profitable Product Process" (11:22) How they make product adjustments based on previous failures (15:55) Why a lack of cultural understanding caused LabStats to fail internationally (18:43) Quantifying value beyond dollars and cents (25:23) How John is able to work so closely with his customers without barriers (30:24) Who makes up the LabStats product research team (35:04) ​​How strong customer relationships help inform the UX design process (38:29) Getting senior management to accept that you can't regularly and accurately predict when you’ll be feature-complete and ship (43:51) Where John learned his skills as a successful product manager (47:20) Where you can go to cultivate the non-technical skills to help you become a better SAAS analytics product leader (51:00) What advice would John Felushko have given himself 10 years ago? (56:19) Where you can find more from John Felushko   Quotes from Today’s Episode “The product process is [essentially] really nothing more than the scientific method applied to business. Every product is an experiment - it has a hypothesis about a problem it solves. At LabStats [we have a process] where we go out and clearly articulate the problem. We clearly identify who the customers are, and who are [people at other colleges] having that problem. Incrementally and as inexpensively as possible, [we] test our solutions against those specific customers. The success rate [of testing solutions by cross-referencing with other customers] has been extremely high.” - John Felushko (6:46) “One of the failures I see in Americans is that we don’t realize how much culture matters. Americans have this bias to believe that whatever is valuable in my culture is valuable in other cultures. Value is entirely culturally determined and subjective. Value isn’t a number on a spreadsheet. [LabStats positioned our producty] as something that helps you save money and be financially efficient. In French government culture, financial efficiency is not a top priority. Spending government money on things like education is seen as a positive good. The more money you can spend on it, the better.  So, the whole message of financial efficiency wasn’t going to work in that market.” - John Felushko (16:35) “What I’m really selling with data products is confidence. I’m selling assurance. I’m selling an emotion. Before I was a product manager, I spent about ten years in outdoor retail, selling backpacks and boots. What I learned from that is you’re always selling emotion, at every level. If you can articulate the ROI, the real value is that the buyer has confidence they bought the right thing.” - John Felushko (20:29) “[LabStats] has three massive, multi-million dollar horror stories in our past where we [spent] millions of dollars in development work for no results. No ROI. Horror stories are what shape people’s values more than anything else. Avoiding negative outc

    58 min
  7. SEP 17

    152 - 10 Reasons Not to Get Professional UX Design Help for Your Enterprise AI or SAAS Analytics Product

    In today’s episode, I’m going to perhaps work myself out of some consulting engagements, but hey, that’s ok! True consulting is about service—not PPT decks with strategies and tiers of people attached to rate cards. Specifically today, I decided to reframe a topic and approach it from the opposite/negative side. So, instead of telling you when the right time is to get UX design help for your enterprise SAAS analytics or AI product(s), today I’m going to tell you when you should NOT get help!    Reframing this was really fun and made me think a lot as I recorded the episode. Some of these reasons aren’t necessarily representative of what I believe, but rather what I’ve heard from clients and prospects over 25 years—what they believe. For each of these, I’m also giving a counterargument, so hopefully, you get both sides of the coin.    Finally, analytical thinkers, especially data product managers it seems, often want to quantify all forms of value they produce in hard monetary units—and so in this episode, I’m also going to talk about other forms of value that products can create that are worth paying for—and how mushy things like “feelings” might just come into play ;-)  Ready?     Highlights/ Skip to: (1:52) Going for short, easy wins (4:29) When you think you have good design sense/taste  (7:09) The impending changes coming with GenAI (11:27) Concerns about "dumbing down" or oversimplifying technical analytics solutions that need to be powerful and flexible (15:36) Agile and process FTW? (18:59) UX design for and with platform products (21:14) The risk of involving designers who don’t understand data, analytics, AI, or your complex domain considerations  (30:09) Designing after the ML models have been trained—and it’s too late to go back  (34:59) Not tapping professional design help when your user base is small , and you have routine access and exposure to them   (40:01) Explaining the value of UX design investments to your stakeholders when you don’t 100% control the budget or decisions    Quotes from Today’s Episode “It is true that most impactful design often creates more product and engineering work because humans are messy. While there sometimes are these magic, small GUI-type changes that have big impact downstream, the big picture value of UX can be lost if you’re simply assigning low-level GUI improvement tasks and hoping to see a big product win. It always comes back to the game you’re playing inside your team: are you working to produce UX and business outcomes or shipping outputs on time? ” (3:18) “If you’re building something that needs to generate revenue, there has to be a sense of trust and belief in the solution. We’ve all seen the challenges of this with LLMs. [when] you’re unable to get it to respond in a way that makes you feel confident that it understood the query to begin with. And then you start to have all these questions about, ‘Is the answer not in there,’ or ‘Am I not prompting it correctly?’ If you think that most of this is just an technical data science problem, then don’t bother to invest in UX design work… ” (9:52) “Design is about, at a minimum, making it useful and usable, if not delightful. In order to do that, we need to understand the people that are going to use it. What would an improvement to this person’s life look like? Simplifying and dumbing things down is not always the answer. There are tools and solutions that need to be complex, flexible, and/or provide a lot of power – especially in an enterprise context. Working with a designer who solely insists on simplifying everything at all costs regardless of your stated business outcome goals is a red flag—and a reason not to invest in UX design—at least with them!“ (12:28)“I think what an analytics product manager [or] an AI product manager needs to accept is there are other ways to measure the value of UX design’s contribution to your product and to your organization. Let’s say that you have a mission-critical internal da

    53 min
5
out of 5
39 Ratings

About

Are you an enterprise data or product leader seeking to increase the user adoption and business value of your ML/AI and analytical data products? While it is easier than ever to create ML and analytics from a technology perspective, do you find that getting users to use, buyers to buy, and stakeholders to make informed decisions with data remains challenging? If you lead an enterprise data team, have you heard that a ”data product” approach can help—but you’re not sure what that means, or whether software product management and UX design principles can really change consumption of ML and analytics? My name is Brian T. O’Neill, and on Experiencing Data—one of the top 2% of podcasts in the world—I offer you a consulting product designer’s perspective on why simply creating ML models and analytics dashboards aren’t sufficient to routinely produce outcomes for your users, customers, and stakeholders. My goal is to help you design more useful, usable, and delightful data products by better understanding your users, customers, and business sponsor’s needs. After all, you can’t produce business value with data if the humans in the loop can’t or won’t use your solutions. Every 2 weeks, I release solo episodes and interviews with chief data officers, data product management leaders, and top UX design and research professionals working at the intersection of ML/AI, analytics, design and product—and now, I’m inviting you to join the #ExperiencingData listenership. Transcripts, 1-page summaries and quotes available at: https://designingforanalytics.com/ed ABOUT THE HOST Brian T. O’Neill is the Founder and Principal of Designing for Analytics, an independent consultancy helping technology leaders turn their data into valuable data products. He is also the founder of The Data Product Leadership Community. For over 25 years, he has worked with companies including DellEMC, Tripadvisor, Fidelity, NetApp, Roche, Abbvie, and several SAAS startups. He has spoken internationally, giving talks at O’Reilly Strata, Enterprise Data World, the International Institute for Analytics Symposium, Predictive Analytics World, and Boston College. Brian also hosts the highly-rated podcast Experiencing Data, advises students in MIT’s Sandbox Innovation Fund and has been published by O’Reilly Media. He is also a professional percussionist who has backed up artists like The Who and Donna Summer, and he’s graced the stages of Carnegie Hall and The Kennedy Center. Subscribe to Brian’s Insights mailing list at https://designingforanalytics.com/list.

You Might Also Like

To listen to explicit episodes, sign in.

Stay up to date with this show

Sign in or sign up to follow shows, save episodes, and get the latest updates.

Select a country or region

Africa, Middle East, and India

Asia Pacific

Europe

Latin America and the Caribbean

The United States and Canada