Translating Aging

BioAge Labs
Translating Aging Podcast

On Translating Aging, we talk with the worldwide community of researchers, entrepreneurs, and investors who are moving longevity science from the lab to the clinic. We bring you a commanding view of the entire field, in the words of the people and companies who are moving it forward today. The podcast is sponsored by BioAge labs, a clinical-stage biotechnology company developing therapies to extend human healthspan by targeting the molecular causes of aging.

  1. MAY 8

    Harnessing the Secretome to Combat Age-Related Immune Dysfunction (Dr. Hans Keirstead, Immunis)

    Hans Keirstead, PhD, is the Chairman of the Board at Immunis, a biotechnology company researching and developing immune secretome products to address age-driven immune deficits. In this episode, Chris and Hans discuss Immunis' approach to targeting the aging immune system as a key driver of age-related disease. They explore the potential of immune secretome factors to restore youthful immune function, the promising results from Immunis' preclinical and early clinical studies, and the future of immune-modulating therapeutics to extend healthspan. THE FINER DETAILS The critical role of the immune system in the aging process and age-related diseaseImmunis' focus on immune precursor cell secretome factors to restore youthful immune functionPreclinical studies demonstrating the effects of Immunis' secretome product on muscle growth, metabolism, and inflammation in aged miceEarly results from Immunis' Phase 1/2a clinical trial in older adults with muscle atrophy and knee osteoarthritisThe potential for immune secretome therapeutics to treat a wide range of age-related conditions and enhance healthspanThe importance of developing affordable and accessible therapies to maximize impact QUOTES "Every manifestation of aging is immunologically mediated. It's phenomenal. When one ages, your immune system in 100% of humans gets angry, so becomes highly pro-inflammatory.""Our drug is not a stem cell. It's not an immune cell. It is the secretion set, that same secretion set that you and I have, and everyone on this earth has, that precipitously declines with age, and now we're able to restore it.""We showed that IMMUNA fundamentally changes gene expression in order to promote the expression of genes for growth and regeneration. And then it inhibits the expression of genes that inhibit growth and regeneration.""I believe that this [secretome therapeutic] is going to be taken prophylactically by most humans, every quarter or so, to keep their immune system young, keep their immune system in a prophylactically competent state.""I want this thing to be available to everyone who wants it at an extremely low price, so that we can keep people alive, so that we can keep them disease free, so they can have productive years in their golden times, in their older age." LINK TO PAPER Stem cell secretome treatment improves whole-body metabolism, reduces adiposity, and promotes skeletal muscle function in aged mice

    48 min
  2. MAR 20

    Gene Therapies to Treat and Reverse Aging (Noah Davidsohn, Rejuvenate Bio)

    Dr. Noah Davidsohn, co-founder and CSO of Rejuvenate Bio, discusses the company's innovative work using gene therapies to treat age-related diseases in dogs and humans. In his conversation with host Chris Patil, he explains his recent groundbreaking study showing that partial cellular reprogramming with Yamanaka factors extended lifespan and healthspan in very old mice. Noah then outlines Rejuvenate's clinical pipeline, including targeting longevity pathways like FGF-21 for heart disease and combining TGF-beta inhibition with klotho for osteoarthritis. By choosing secreted factors deliverable with liver-targeted gene therapy, Rejuvenate hopes to circumvent delivery challenges. Noah conveys an inspiring vision of adding healthy years to dogs' and humans' lives. Key Topics Covered: Rejuvenate Bio's mission to reverse aging and age-related diseaseLifespan doubling in old mice with cyclic Yamanaka factor inductionControllable gene therapy system for in vivo partial reprogrammingChoice of FGF-21 for pleiotropic effects deliverable from liverLead programs for arrhythmogenic cardiomyopathy and mitral valve diseaseAdvantages of treating age-related diseases first in dogsCombination gene therapy for osteoarthritis: TGF-beta and klothoSecreted proteins enable broad effects without broad deliveryVision of expanding healthspan by "squaring the curve"Potential to keep people healthy, active and productive to 100+

    35 min
  3. 12/06/2023

    30 Years of Aging Biology: A Pioneer's Perspective (Cynthia Kenyon, VP-Aging Research at Calico Labs)

    30 Years of Aging Biology: A Pioneer’s Perspective (Cynthia Kenyon - VP Aging Biology, Calico Labs) Dr. Cynthia Kenyon reflects on the evolution of the longevity field over the 30 years since the publication of her groundbreaking paper, “A C. elegans mutant that lives twice as long as wild type,” a genetic analysis of one of the first single-gene mutations to extend lifespan in the worm. She recounts the initial excitement and skepticism around the idea of a pathway that regulates aging, and subsequent validation of this and related ideas in a wide range of model organisms. She also discusses her longstanding belief in the translational potential to improve human healthspan, and her experience as a co-founder of one of the first longevity biotech startups, Elixir Pharmaceuticals, in 1999. Based on her unique historical perspective—and with undiminished enthusiasm—she looks ahead to the unsolved mysteries that will propel the next generation of breakthroughs. Key ideas: Origins of looking at aging regulation in C. elegans in the 1990sage-1 and daf-2 as the first aging genesEarly resistance to the idea of studying aging at the molecular levelCloning of genes to reveal conserved longevity pathways (IIS/mTOR)Extending lifespan in invertebrates, and then miceThe connection between stress resistance to evolutionary theoryDr. Kenyon's initial belief in the translatability of aging scienceCo-founding Elixir Pharmaceuticals in 1999 to target agingCurrent optimism about interventions against agingNeed for public funding of large trials of natural compoundsExcitement about newest mechanisms like reprogrammingThe enduring promise of targeting core nutrient-sensing networksDevelopmental origins of aging rates and resilience Links:  Email questions, comments, and feedback to podcast@bioagelabs.com Translating Aging on Twitter: @bioagepodcast BioAge Labs Website bioagelabs.com BioAge Labs Twitter @bioagelabs BioAge Labs LinkedIn

    44 min
  4. 11/29/2023

    XPRIZE Healthspan: Catalyzing Therapies for Aging (Jamie Justice, PhD)

    Dr. Jamie Justice is Executive Director of the newly launched XPRIZE Healthspan, a $101 M international competition to accelerate therapeutics targeting aging biology. In conversation with host Chris Patil, Dr. Justice outlines the motivation, structure, and timeline of the prize, as well as how teams can get involved. She also explains unique aspects of this prize, including the public commentary period, how existing trials can be adapted for competition, functional endpoints, and judging criteria. She also conveys why coordination is needed to overcome barriers and drive investment in longevity R&D. Listeners will gain key insights into this ambitious initiative to catalyze progress translating research into treatments for aging. Key ideas: Why aging solutions need acceleration despite increased attentionThe role and track record of incentive competitions like XPRIZEMotivation and sponsors enabling XPRIZE Healthspan ($101M purse)Timeline from conceptualization to upcoming 7-year active competitionExpert endpoint committee setting measurable functional criteriaInitial public commentary period for radical collaboration with teamsPhases: Intent to compete, qualifying submissions, finalist selectionExisting prevention trials can add program assessmentsCommon data and protocols to validate findings across teamsGoal of demonstrating restoration of function across domainsSecondary judging criteria around accessibility, biomarkersDriving global coordination, investment, and innovation Links:  XPRIZE Healthspan Email questions, comments, and feedback to podcast@bioagelabs.com Translating Aging on Twitter: @bioagepodcast BioAge Labs Website bioagelabs.com BioAge Labs Twitter @bioagelabs BioAge Labs LinkedIn

    55 min
  5. 11/01/2023

    "How We Age: The Science of Longevity" (Professor Coleen Murphy, Princeton)

    Dr. Coleen Murphy is a prominent aging researcher and author of the upcoming book “How We Age: The Science of Longevity” from Princeton University Press. In this wide-ranging discussion, Coleen provides insights into her motivation for writing this book, key topics covered, and her unique perspective on the field.  Key ideas: Addressing ethical concerns about studying aging and longevityDefining aging conceptually and how metrics like lifespan vs. healthspan are measuredUsing genetics, transcriptomics and other tools to understand molecular changes in agingThe prominent role of reproduction and sex differences in agingTheories on tradeoffs between reproduction and longevityGenetics of aging pathways including insulin/IGF-1, mTOR, and sirtuinsCellular processes involved in aging such as mitochondrial dysfunction, epigenetic changes, senescenceThe importance of models like C. elegans and Drosophila in aging researchOngoing research and future potential for interventions to increase healthspanThe challenge of complex science without excessive jargonHighlighting critical contributions by women scientists in the fieldOmitting personal lifestyle advice and focusing on evidence-based scienceThe rapid pace of advancement in biotech applications of longevity science Links:  Email questions, comments, and feedback to podcast@bioagelabs.com Translating Aging on Twitter: @bioagepodcast BioAge Labs Website bioagelabs.com BioAge Labs Twitter @bioagelabs BioAge Labs LinkedIn

    37 min
  6. 10/11/2023

    From Startup to Acquisition (Nick Hertz, Mitokinin)

    Dr. Nicholas Hertz is the co-founder and former CSO of Mitokinin, a biotech company developing therapies targeting damaged mitochondria in neurodegenerative disease. Mitokinin was recently acquired by pharmaceutical giant AbbVie. In this episode, Nick recounts the journey from academic research on PINK1 biology to founding a startup and advancing a clinical candidate. He provides insights into the drug discovery process, optimizing lead compounds, translating basic findings into therapies, and partnering with big pharma. Nick also shares lessons learned along the way about focusing on robust science, being adaptable, and maintaining ambition to help patients. Key topics covered: Background on Mitokinin’s approach of activating PINK1 to clear damaged mitochondriaFounding a company based on academic research and discoveriesNavigating from tool compounds to optimizing in vivo activity and drug propertiesUsing mitochondrial biomarkers like phospho-ubiquitin to track target engagementPartnering with AbbVie: alignment on science, IP transfer after acquisitionImportance of reproducibility, following the science to clinic-ready agentsPlanning the next neurodegeneration startup based on past experienceAdvice for startups: pick projects wisely, focus on robust science over hype Notable Quotes: (edited slightly for clarity and length) "What PINK1 does is signal when mitochondria have gone bad and need to be cleared away." "Seeing PINK1 mutations lead to early Parkinson's cemented the link between mitochondrial health and neurodegeneration." "The biggest challenge was getting enough brain exposure and potency for in vivo efficacy." "We developed assays to measure phospho-ubiquitin levels in patient samples and use it as a pharmacodynamic marker." "With AbbVie, we were aligned on making a safe drug you'd feel comfortable giving to your own family." "I enjoyed the journey more than the destination. Now I want to get back in the lab and do more science." "Focus on projects you believe in and doing the most robust, reproducible science." "I consider failing to help patients in Phase 3 trials a failure, even if you already exited successfully." Links:  Mitokinin website (this link may become obsolete as Mitokinin becomes part of AbbVie) Email questions, comments, and feedback to podcast@bioagelabs.com Translating Aging on Twitter: @bioagepodcast BioAge Labs Website bioagelabs.com BioAge Labs Twitter @bioagelabs BioAge Labs LinkedIn

    42 min
5
out of 5
11 Ratings

About

On Translating Aging, we talk with the worldwide community of researchers, entrepreneurs, and investors who are moving longevity science from the lab to the clinic. We bring you a commanding view of the entire field, in the words of the people and companies who are moving it forward today. The podcast is sponsored by BioAge labs, a clinical-stage biotechnology company developing therapies to extend human healthspan by targeting the molecular causes of aging.

To listen to explicit episodes, sign in.

Stay up to date with this show

Sign in or sign up to follow shows, save episodes, and get the latest updates.

Select a country or region

Africa, Middle East, and India

Asia Pacific

Europe

Latin America and the Caribbean

The United States and Canada