Talk Python To Me

Michael Kennedy

Talk Python to Me is a weekly podcast hosted by developer and entrepreneur Michael Kennedy. We dive deep into the popular packages and software developers, data scientists, and incredible hobbyists doing amazing things with Python. If you're new to Python, you'll quickly learn the ins and outs of the community by hearing from the leaders. And if you've been Pythoning for years, you'll learn about your favorite packages and the hot new ones coming out of open source.

  1. قبل ١١ ساعة

    Web Frameworks in Prod by Their Creators

    Today on Talk Python, the creators behind FastAPI, Flask, Django, Quart, and Litestar get practical about running apps based on their framework in production. Deployment patterns, async gotchas, servers, scaling, and the stuff you only learn at 2 a.m. when the pager goes off. For Django, we have Carlton Gibson and Jeff Triplet. For Flask, we have David Lord and Phil Jones, and on team Litestar we have Janek Nouvertné and Cody Fincher, and finally Sebastián Ramírez from FastAPI is here. Let’s jump in. Episode sponsors Talk Python Courses Python in Production Links from the show Carlton Gibson - Django: github.com Sebastian Ramirez - FastAPI: github.com David Lord - Flask: davidism.com Phil Jones - Flask and Quartz(async): pgjones.dev Yanik Nouvertne - LiteStar: github.com Cody Fincher - LiteStar: github.com Jeff Triplett - Django: jefftriplett.com Django: www.djangoproject.com Flask: flask.palletsprojects.com Quart: quart.palletsprojects.com Litestar: litestar.dev FastAPI: fastapi.tiangolo.com Coolify: coolify.io ASGI: asgi.readthedocs.io WSGI (PEP 3333): peps.python.org Granian: github.com Hypercorn: github.com uvicorn: uvicorn.dev Gunicorn: gunicorn.org Hypercorn: hypercorn.readthedocs.io Daphne: github.com Nginx: nginx.org Docker: www.docker.com Kubernetes: kubernetes.io PostgreSQL: www.postgresql.org SQLite: www.sqlite.org Celery: docs.celeryq.dev SQLAlchemy: www.sqlalchemy.org Django REST framework: www.django-rest-framework.org Jinja: jinja.palletsprojects.com Click: click.palletsprojects.com HTMX: htmx.org Server-Sent Events (SSE): developer.mozilla.org WebSockets (RFC 6455): www.rfc-editor.org HTTP/2 (RFC 9113): www.rfc-editor.org HTTP/3 (RFC 9114): www.rfc-editor.org uv: docs.astral.sh Amazon Web Services (AWS): aws.amazon.com Microsoft Azure: azure.microsoft.com Google Cloud Run: cloud.google.com Amazon ECS: aws.amazon.com AlloyDB for PostgreSQL: cloud.google.com Fly.io: fly.io Render: render.com Cloudflare: www.cloudflare.com Fastly: www.fastly.com Watch this episode on YouTube: youtube.com Episode #533 deep-dive: talkpython.fm/533 Episode transcripts: talkpython.fm Theme Song: Developer Rap 🥁 Served in a Flask 🎸: talkpython.fm/flasksong ---== Don't be a stranger ==--- YouTube: youtube.com/@talkpython Bluesky: @talkpython.fm Mastodon: @talkpython@fosstodon.org X.com: @talkpython Michael on Bluesky: @mkennedy.codes Michael on Mastodon: @mkennedy@fosstodon.org Michael on X.com: @mkennedy

    ١ س ٢ د
  2. ٢٩‏/١٢‏/٢٠٢٥

    2025 Python Year in Review

    Python in 2025 is in a delightfully refreshing place: the GIL's days are numbered, packaging is getting sharper tools, and the type checkers are multiplying like gremlins snacking after midnight. On this episode, we have an amazing panel to give us a range of perspectives on what matter in 2025 in Python. We have Barry Warsaw, Brett Cannon, Gregory Kapfhammer, Jodie Burchell, Reuven Lerner, and Thomas Wouters on to give us their thoughts. Episode sponsors Seer: AI Debugging, Code TALKPYTHON Talk Python Courses Links from the show Python Software Foundation (PSF): www.python.org PEP 810: Explicit lazy imports: peps.python.org PEP 779: Free-threaded Python is officially supported: peps.python.org PEP 723: Inline script metadata: peps.python.org PyCharm: www.jetbrains.com JetBrains: www.jetbrains.com Visual Studio Code: code.visualstudio.com pandas: pandas.pydata.org PydanticAI: ai.pydantic.dev OpenAI API docs: platform.openai.com uv: docs.astral.sh Hatch: github.com PDM: pdm-project.org Poetry: python-poetry.org Project Jupyter: jupyter.org JupyterLite: jupyterlite.readthedocs.io PEP 690: Lazy Imports: peps.python.org PyTorch: pytorch.org Python concurrent.futures: docs.python.org Python Package Index (PyPI): pypi.org EuroPython: tickets.europython.eu TensorFlow: www.tensorflow.org Keras: keras.io PyCon US: us.pycon.org NumFOCUS: numfocus.org Python discussion forum (discuss.python.org): discuss.python.org Language Server Protocol: microsoft.github.io mypy: mypy-lang.org Pyright: github.com Pylance: marketplace.visualstudio.com Pyrefly: github.com ty: github.com Zuban: docs.zubanls.com Jedi: jedi.readthedocs.io GitHub: github.com PyOhio: www.pyohio.org Watch this episode on YouTube: youtube.com Episode #532 deep-dive: talkpython.fm/532 Episode transcripts: talkpython.fm Theme Song: Developer Rap 🥁 Served in a Flask 🎸: talkpython.fm/flasksong ---== Don't be a stranger ==--- YouTube: youtube.com/@talkpython Bluesky: @talkpython.fm Mastodon: @talkpython@fosstodon.org X.com: @talkpython Michael on Bluesky: @mkennedy.codes Michael on Mastodon: @mkennedy@fosstodon.org Michael on X.com: @mkennedy

    ١ س ١٩ د
  3. ١٣‏/١٢‏/٢٠٢٥

    anywidget: Jupyter Widgets made easy

    For years, building interactive widgets in Python notebooks meant wrestling with toolchains, platform quirks, and a mountain of JavaScript machinery. Most developers took one look and backed away slowly. Trevor Manz decided that barrier did not need to exist. His idea was simple: give Python users just enough JavaScript to unlock the web’s interactivity, without dragging along the rest of the web ecosystem. That idea became anywidget, and it is quickly becoming the quiet connective tissue of modern interactive computing. Today we dig into how it works, why it has taken off, and how it might change the way we explore data. Episode sponsors Seer: AI Debugging, Code TALKPYTHON PyCharm, code STRONGER PYTHON Talk Python Courses Links from the show Trevor on GitHub: github.com anywidget GitHub: github.com Trevor's SciPy 2024 Talk: www.youtube.com Marimo GitHub: github.com Myst (Markdown docs): mystmd.org Altair: altair-viz.github.io DuckDB: duckdb.org Mosaic: uwdata.github.io ipywidgets: ipywidgets.readthedocs.io Tension between Web and Data Sci Graphic: blobs.talkpython.fm Quak: github.com Walk through building a widget: anywidget.dev Widget Gallery: anywidget.dev Video: How do I anywidget?: www.youtube.com PyCharm + PSF Fundraiser: pycharm-psf-2025 code STRONGER PYTHON Watch this episode on YouTube: youtube.com Episode #530 deep-dive: talkpython.fm/530 Episode transcripts: talkpython.fm Theme Song: Developer Rap 🥁 Served in a Flask 🎸: talkpython.fm/flasksong ---== Don't be a stranger ==--- YouTube: youtube.com/@talkpython Bluesky: @talkpython.fm Mastodon: @talkpython@fosstodon.org X.com: @talkpython Michael on Bluesky: @mkennedy.codes Michael on Mastodon: @mkennedy@fosstodon.org Michael on X.com: @mkennedy

    ١ س ١١ د
  4. ٣٠‏/١١‏/٢٠٢٥

    Python apps with LLM building blocks

    In this episode, I’m talking with Vincent Warmerdam about treating LLMs as just another API in your Python app, with clear boundaries, small focused endpoints, and good monitoring. We’ll dig into patterns for wrapping these calls, caching and inspecting responses, and deciding where an LLM API actually earns its keep in your architecture. Episode sponsors Seer: AI Debugging, Code TALKPYTHON NordStellar Talk Python Courses Links from the show Vincent on X: @fishnets88 Vincent on Mastodon: @koaning LLM Building Blocks for Python Co-urse: training.talkpython.fm Top Talk Python Episodes of 2024: talkpython.fm LLM Usage - Datasette: llm.datasette.io DiskCache - Disk Backed Cache (Documentation): grantjenks.com smartfunc - Turn docstrings into LLM-functions: github.com Ollama: ollama.com LM Studio - Local AI: lmstudio.ai marimo - A Next-Generation Python Notebook: marimo.io Pydantic: pydantic.dev Instructor - Complex Schemas & Validation (Python): python.useinstructor.com Diving into PydanticAI with marimo: youtube.com Cline - AI Coding Agent: cline.bot OpenRouter - The Unified Interface For LLMs: openrouter.ai Leafcloud: leaf.cloud OpenAI looks for its "Google Chrome" moment with new Atlas web browser: arstechnica.com Watch this episode on YouTube: youtube.com Episode #528 deep-dive: talkpython.fm/528 Episode transcripts: talkpython.fm Theme Song: Developer Rap 🥁 Served in a Flask 🎸: talkpython.fm/flasksong ---== Don't be a stranger ==--- YouTube: youtube.com/@talkpython Bluesky: @talkpython.fm Mastodon: @talkpython@fosstodon.org X.com: @talkpython Michael on Bluesky: @mkennedy.codes Michael on Mastodon: @mkennedy@fosstodon.org Michael on X.com: @mkennedy

    ١ س ١٧ د
  5. ١٠‏/١١‏/٢٠٢٥

    MCP Servers for Python Devs

    Today we’re digging into the Model Context Protocol, or MCP. Think LSP for AI: build a small Python service once and your tools and data show up across editors and agents like VS Code, Claude Code, and more. My guest, Den Delimarsky from Microsoft, helps build this space and will keep us honest about what’s solid versus what's just shiny. We’ll keep it practical: transports that actually work, guardrails you can trust, and a tiny server you could ship this week. By the end, you’ll have a clear mental model and a path to plug Python into the internet of agents. Episode sponsors Sentry AI Monitoring, Code TALKPYTHON NordStellar Talk Python Courses Links from the show Den Delimarsky: den.dev Agentic AI Programming for Python Course: training.talkpython.fm Model Context Protocol: modelcontextprotocol.io Model Context Protocol Specification (2025-03-26): modelcontextprotocol.io MCP Python Package (PyPI): pypi.org Awesome MCP Servers (punkpeye) GitHub Repo: github.com Visual Studio Code Docs: Copilot MCP Servers: code.visualstudio.com GitHub MCP Server (GitHub repo): github.com GitHub Blog: Meet the GitHub MCP Registry: github.blog MultiViewer App: multiviewer.app GitHub Blog: Spec-driven development with AI (open source toolkit): github.blog Model Context Protocol Registry (GitHub): github.com mcp (GitHub organization): github.com Tailscale: tailscale.com Watch this episode on YouTube: youtube.com Episode #527 deep-dive: talkpython.fm/527 Episode transcripts: talkpython.fm Theme Song: Developer Rap 🥁 Served in a Flask 🎸: talkpython.fm/flasksong ---== Don't be a stranger ==--- YouTube: youtube.com/@talkpython Bluesky: @talkpython.fm Mastodon: @talkpython@fosstodon.org X.com: @talkpython Michael on Bluesky: @mkennedy.codes Michael on Mastodon: @mkennedy@fosstodon.org Michael on X.com: @mkennedy

    ١ س ٦ د
  6. ٠١‏/١١‏/٢٠٢٥

    Building Data Science with Foundation LLM Models

    Today, we’re talking about building real AI products with foundation models. Not toy demos, not vibes. We’ll get into the boring dashboards that save launches, evals that change your mind, and the shift from analyst to AI app builder. Our guide is Hugo Bowne-Anderson, educator, podcaster, and data scientist, who’s been in the trenches from scalable Python to LLM apps. If you care about shipping LLM features without burning the house down, stick around. Episode sponsors Posit NordStellar Talk Python Courses Links from the show Hugo Bowne-Anderson: x.com Vanishing Gradients Podcast: vanishinggradients.fireside.fm Fundamentals of Dask: High Performance Data Science Course: training.talkpython.fm Building LLM Applications for Data Scientists and Software Engineers: maven.com marimo: a next-generation Python notebook: marimo.io DevDocs (Offline aggregated docs): devdocs.io Elgato Stream Deck: elgato.com Sentry's Seer: talkpython.fm The End of Programming as We Know It: oreilly.com LorikeetCX AI Concierge: lorikeetcx.ai Text to SQL & AI Query Generator: text2sql.ai Inverse relationship enthusiasm for AI and traditional projects: oreilly.com Watch this episode on YouTube: youtube.com Episode #526 deep-dive: talkpython.fm/526 Episode transcripts: talkpython.fm Theme Song: Developer Rap 🥁 Served in a Flask 🎸: talkpython.fm/flasksong ---== Don't be a stranger ==--- YouTube: youtube.com/@talkpython Bluesky: @talkpython.fm Mastodon: @talkpython@fosstodon.org X.com: @talkpython Michael on Bluesky: @mkennedy.codes Michael on Mastodon: @mkennedy@fosstodon.org Michael on X.com: @mkennedy

    ١ س ٧ د

المضيفون والضيوف

التقييمات والمراجعات

٥
من ٥
‫٤ من التقييمات‬

حول

Talk Python to Me is a weekly podcast hosted by developer and entrepreneur Michael Kennedy. We dive deep into the popular packages and software developers, data scientists, and incredible hobbyists doing amazing things with Python. If you're new to Python, you'll quickly learn the ins and outs of the community by hearing from the leaders. And if you've been Pythoning for years, you'll learn about your favorite packages and the hot new ones coming out of open source.

قد يعجبك أيضًا