In this episode of the Epigenetics Podcast, we talked with Ferdinand von Meyenn from ETH Zürich about his work on the interplay of nutrition, metabolic pathways, and epigenetic regulation. To start Dr. Meyenn recounts his pivotal research on DNA methylation in naive embryonic stem cells during his time with Wolf Reick. He explains the dynamics of global demethylation in naive stem cells, revealing the key enzymes involved and the unexpected findings surrounding UHF1—its role in maintaining DNA methylation levels and influencing the methylation landscape during early embryonic development. Dr. Meyenn then shares his perspective on the scientific transition to establishing his own lab at ETH. He reflects on his ambitions to merge the fields of metabolism and epigenetics, which is a recurring theme throughout his research. By investigating the interplay between metabolic changes and epigenetic regulation, he aims to uncover how environmental factors affect cellular dynamics across various tissues. This leads to a discussion of his recent findings on histone lactylation and its implications in cellular metabolism, as well as the intricacies of epigenetic imprinting in stem cell biology. Last but not least we touch upon Dr. Meyenn’s most recent study, published in Nature, investigating the epigenetic effects of obesity. He provides a detailed overview of how adipose tissue undergoes transcriptional and epigenetic rearrangements during weight fluctuations. The conversation highlights the notion of epigenetic memory in adipocytes, showing how obesity is not just a temporary state but leaves lasting cellular changes that can predispose individuals to future weight regain after dieting. This exploration opens avenues for potential therapeutic interventions aimed at reversing adverse epigenetic modifications. References von Meyenn, F., Iurlaro, M., Habibi, E., Liu, N. Q., Salehzadeh-Yazdi, A., Santos, F., Petrini, E., Milagre, I., Yu, M., Xie, Z., Kroeze, L. I., Nesterova, T. B., Jansen, J. H., Xie, H., He, C., Reik, W., & Stunnenberg, H. G. (2016). Impairment of DNA Methylation Maintenance Is the Main Cause of Global Demethylation in Naive Embryonic Stem Cells. Molecular cell, 62(6), 848–861. https://doi.org/10.1016/j.molcel.2016.04.025 Galle, E., Wong, C. W., Ghosh, A., Desgeorges, T., Melrose, K., Hinte, L. C., Castellano-Castillo, D., Engl, M., de Sousa, J. A., Ruiz-Ojeda, F. J., De Bock, K., Ruiz, J. R., & von Meyenn, F. (2022). H3K18 lactylation marks tissue-specific active enhancers. Genome biology, 23(1), 207. https://doi.org/10.1186/s13059-022-02775-y Agostinho de Sousa, J., Wong, C. W., Dunkel, I., Owens, T., Voigt, P., Hodgson, A., Baker, D., Schulz, E. G., Reik, W., Smith, A., Rostovskaya, M., & von Meyenn, F. (2023). Epigenetic dynamics during capacitation of naïve human pluripotent stem cells. Science advances, 9(39), eadg1936. https://doi.org/10.1126/sciadv.adg1936 Bonder, M. J., Clark, S. J., Krueger, F., Luo, S., Agostinho de Sousa, J., Hashtroud, A. M., Stubbs, T. M., Stark, A. K., Rulands, S., Stegle, O., Reik, W., & von Meyenn, F. (2024). scEpiAge: an age predictor highlighting single-cell ageing heterogeneity in mouse blood. Nature communications, 15(1), 7567. https://doi.org/10.1038/s41467-024-51833-5 Hinte, L. C., Castellano-Castillo, D., Ghosh, A., Melrose, K., Gasser, E., Noé, F., Massier, L., Dong, H., Sun, W., Hoffmann, A., Wolfrum, C., Rydén, M., Mejhert, N., Blüher, M., & von Meyenn, F. (2024). Adipose tissue retains an epigenetic memory of obesity after weight loss. Nature, 636(8042), 457–465. https://doi.org/10.1038/s41586-024-08165-7 Related Episodes Nutriepigenetics: The Effects of Diet on Behavior (Monica Dus) Epigenetic and Metabolic Regulation of Early Development (Jan Żylicz) Effects of Environmental Cues on the Epigenome and Longevity (Paul Shiels) Contact Epigenetics Podcast on Mastodon Epigenetics Podcast on Bluesky Dr. Stefan Dilli