Machine Learning

Andrew Ng
Machine Learning

This course provides a broad introduction to machine learning and statistical pattern recognition. The course also discusses recent applications of machine learning, such as to robotic control, data mining, autonomous navigation, bioinformatics, speech recognition, and text and web data processing. Topics include: supervised learning (generative/discriminative learning, parametric/non-parametric learning, neural networks, support vector machines); unsupervised learning (clustering, dimensionality reduction, kernel methods); learning theory (bias/variance tradeoffs; VC theory; large margins); reinforcement learning and adaptive control.

Bewertungen und Rezensionen

4
von 5
6 Bewertungen

Info

This course provides a broad introduction to machine learning and statistical pattern recognition. The course also discusses recent applications of machine learning, such as to robotic control, data mining, autonomous navigation, bioinformatics, speech recognition, and text and web data processing. Topics include: supervised learning (generative/discriminative learning, parametric/non-parametric learning, neural networks, support vector machines); unsupervised learning (clustering, dimensionality reduction, kernel methods); learning theory (bias/variance tradeoffs; VC theory; large margins); reinforcement learning and adaptive control.

Mehr von Stanford

Melde dich an, um anstößige Folgen anzuhören.

Bleib auf dem Laufenden mit dieser Sendung

Melde dich an oder registriere dich, um Sendungen zu folgen, Folgen zu sichern und die neusten Updates zu erhalten.

Wähle ein Land oder eine Region aus

Afrika, Naher Osten und Indien

Asien/Pazifik

Europa

Lateinamerika und Karibik

USA und Kanada