Programming Massively Parallel Processors with CUDA

Stanford University
Programming Massively Parallel Processors with CUDA

Virtually all semiconductor market domains, including PCs, game consoles, mobile handsets, servers, supercomputers, and networks, are converging to concurrent platforms. There are two important reasons for this trend. First, these concurrent processors can potentially offer more effective use of chip space and power than traditional monolithic microprocessors for many demanding applications. Second, an increasing number of applications that traditionally used Application Specific Integrated Circuits (ASICs) are now implemented with concurrent processors in order to improve functionality and reduce engineering cost. The real challenge is to develop applications software that effectively uses these concurrent processors to achieve efficiency and performance goals. The aim of this course is to provide students with knowledge and hands-on experience in developing applications software for processors with massively parallel computing resources. In general, we refer to a processor as massively parallel if it has the ability to complete more than 64 arithmetic operations per clock cycle. Many commercial offerings from NVIDIA, AMD, and Intel already offer such levels of concurrency. Effectively programming these processors will require in-depth knowledge about parallel programming principles, as well as the parallelism models, communication models, and resource limitations of these processors. The target audiences of the course are students who want to develop exciting applications for these processors, as well as those who want to develop programming tools and future implementations for these processors. Visit the CS193G companion website for course materials.

Bewertungen und Rezensionen

4
von 5
3 Bewertungen

Info

Virtually all semiconductor market domains, including PCs, game consoles, mobile handsets, servers, supercomputers, and networks, are converging to concurrent platforms. There are two important reasons for this trend. First, these concurrent processors can potentially offer more effective use of chip space and power than traditional monolithic microprocessors for many demanding applications. Second, an increasing number of applications that traditionally used Application Specific Integrated Circuits (ASICs) are now implemented with concurrent processors in order to improve functionality and reduce engineering cost. The real challenge is to develop applications software that effectively uses these concurrent processors to achieve efficiency and performance goals. The aim of this course is to provide students with knowledge and hands-on experience in developing applications software for processors with massively parallel computing resources. In general, we refer to a processor as massively parallel if it has the ability to complete more than 64 arithmetic operations per clock cycle. Many commercial offerings from NVIDIA, AMD, and Intel already offer such levels of concurrency. Effectively programming these processors will require in-depth knowledge about parallel programming principles, as well as the parallelism models, communication models, and resource limitations of these processors. The target audiences of the course are students who want to develop exciting applications for these processors, as well as those who want to develop programming tools and future implementations for these processors. Visit the CS193G companion website for course materials.

Mehr von Stanford

Melde dich an, um anstößige Folgen anzuhören.

Bleib auf dem Laufenden mit dieser Sendung

Melde dich an oder registriere dich, um Sendungen zu folgen, Folgen zu sichern und die neusten Updates zu erhalten.

Wähle ein Land oder eine Region aus

Afrika, Naher Osten und Indien

Asien/Pazifik

Europa

Lateinamerika und Karibik

USA und Kanada