248 episodios

Attend any conference for any topic and you will hear people saying after that the best and most informative discussions happened in the bar after the show. Read any business magazine and you will find an article saying something along the lines of "Business Analytics is the hottest job category out there, and there is a significant lack of people, process and best practice." In this case the conference was eMetrics, the bar was….multiple, and the attendees were Michael Helbling, Tim Wilson and Jim Cain (Co-Host Emeritus). After a few pints and a few hours of discussion about the cutting edge of digital analytics, they realized they might have something to contribute back to the community. This podcast is one of those contributions. Each episode is a closed topic and an open forum - the goal is for listeners to enjoy listening to Michael, Tim, and Moe share their thoughts and experiences and hopefully take away something to try at work the next day. We hope you enjoy listening to the Digital Analytics Power Hour.

The Analytics Power Hour Michael Helbling, Moe Kiss, Tim Wilson, Val Kroll, and Julie Hoyer

    • Economía y empresa

Attend any conference for any topic and you will hear people saying after that the best and most informative discussions happened in the bar after the show. Read any business magazine and you will find an article saying something along the lines of "Business Analytics is the hottest job category out there, and there is a significant lack of people, process and best practice." In this case the conference was eMetrics, the bar was….multiple, and the attendees were Michael Helbling, Tim Wilson and Jim Cain (Co-Host Emeritus). After a few pints and a few hours of discussion about the cutting edge of digital analytics, they realized they might have something to contribute back to the community. This podcast is one of those contributions. Each episode is a closed topic and an open forum - the goal is for listeners to enjoy listening to Michael, Tim, and Moe share their thoughts and experiences and hopefully take away something to try at work the next day. We hope you enjoy listening to the Digital Analytics Power Hour.

    #239: Non-Technical Backgrounds in the Modern Analytical World with Kirsten Lum

    #239: Non-Technical Backgrounds in the Modern Analytical World with Kirsten Lum

    Is it just us, or does it seem like we're going to need to start plotting the pace of change in the world of analytics on a logarithmic scale? The evolution of the space is exciting, but it can also be a bit dizzying. And intimidating! There's so much to learn, and there are only so many hours in a day! Why did we choose that [insert totally unrelated field of study] degree program?! These questions and more—including a quick explanation of bootstrapping for Tim’s benefit, which is NOT bootstrapping or bootstrap—are the subject of the latest episode of the show, with Kirsten Lum, the CTO of storytellers.ai, joining us to discuss strategies and tactics for the technically-non-technical analyst to thrive in an increasingly technical analytics world. For complete show notes, including links to items mentioned in this episode and a transcript of the show, visit the show page.

    • 1h 2 min
    #238: The Many Problems in Dealing with Data Problems

    #238: The Many Problems in Dealing with Data Problems

    The data has problems. It ALWAYS has problems. Sometimes they're longstanding and well-documented issues that the analyst deeply understands but that regularly trip up business partners. Sometimes they're unexpected interruptions in the data flowing through a complex tech stack. Sometimes they're a dashboard that needs to have its logic tweaked when the calendar rolls into a new year. The analyst often finds herself on point with any and all data problems—identifying an issue when conducting an analysis, receiving an alert about a broken data feed, or simply getting sent a screen capture by a business partner calling out that something looks off in a chart. It takes situational skill and well-tuned judgment calls to figure out what to communicate and when and to whom when any of these happen. And if you don't find some really useful perspectives from Julie, Michael, and Moe on this episode, then we might just have a problem with YOU! (Not really.) For complete show notes, including links to items mentioned in this episode and a transcript of the show, visit the show page.

    • 45 min
    #237: Crossing the Chasm from the Data to Meaningful Outcomes with Kathleen Maley

    #237: Crossing the Chasm from the Data to Meaningful Outcomes with Kathleen Maley

    The backlog of data requests keeps growing. The dashboards are looking like they might collapse under their own weight as they keep getting loaded with more and more data requested by the business. You're taking in requests from the business as efficiently as you can, but it just never ends, and it doesn't feel like you're delivering meaningful business impact. And then you see a Gartner report from a few years back that declares that only 20% of analytical insights deliver business outcomes! Why? WHY?!!! Moe, Julie, and Michael were joined by Kathleen Maley, VP of Analytics at Experian, to chat about the muscle memory of bad habits (analytically speaking), why she tells analysts to never say "Yes" when asked for data (but also why to never say "No," either), and much, much more! For complete show notes, including links to items mentioned in this episode and a transcript of the show, visit the show page.

    • 1h 4 min
    #236: The AI Ecosystem with Matthew Lynley

    #236: The AI Ecosystem with Matthew Lynley

    Aptiv, Baidu, Cerebras, Dataiku… we could keep going… and going… and going. If you know what this list is composed of (nerd), then you probably have some appreciation for how complex and fast moving the AI landscape is today. It would be impossible for a mere human to stay on top of it all, right? Wrong! Our guest on this episode, Matthew Lynley, does exactly that! In his Substack newsletter, Supervised, he covers all of the breaking news in a way that's accessible even if you aren't an MLE (that’s a "machine learning engineer," but you knew that already, right?). We were thrilled he stopped by to chat with Julie, Tim and Val about some of his recent observations and discuss what the implications are for analysts and organizations trying to make sense of it all. For complete show notes, including links to items mentioned in this episode and a transcript of the show, visit the show page.

    • 1h 4 min
    #235: 2023 Year in Review with Josh Crowhurst

    #235: 2023 Year in Review with Josh Crowhurst

    For those who celebrate or acknowledge it, Christmas is now in the rearview mirror. Father Time has a beard that reaches down to his toes, and he’s ready to hand over the clock to an absolutely adorable little Baby Time when 2024 rolls in. That means it’s time for our annual set of reflections on the analytics and data science industry. Somehow, the authoring of this description of the show was completely unaided by an LLM, although the show did include quite a bit of discussion around generative AI. It also included the announcement of a local LLM based on all of our podcast episodes to date (updated with each new episode going forward!), which you can try out here! The discussion was wide-ranging beyond AI: Google Analytics 4, Marketing Mix Modelling (MMM), the technical/engineering side of analytics versus the softer skills of creative analytical thought and engaging with stakeholders, and more, as well as a look ahead to 2024! For complete show notes, including links to items mentioned in this episode and a transcript of the show, visit the show page.

    • 1h 6 min
    #234: Establishing Expectations for Analysts

    #234: Establishing Expectations for Analysts

    It would be a fool's errand to try to list out every expectation for an analyst's role, but where should you draw the line? How specific do you need to be? And how can you document the unspoken expectations without stepping into micromanagement? Tim, Moe, and Julie took a run at hashing these questions out in our most recent episode so you don't have to rely solely on that generic role expectations grid you got from HR. Even though this topic is about setting expectations for other analysts, the conversation took quite a few introspective turns about how your internal standards are calibrated and what experiences along the way shaped them. As usual, you can expect some great stories about expectation setting gone wrong and what happens when you make Tim have a conversation about feelings, you miss one of Moe's deadlines, or use the wrong font in one of Julie's deliverables! For complete show notes, including links to items mentioned in this episode and a transcript of the show, visit the show page.

    • 1h

Top podcasts en Economía y empresa

Luis Ramos
Adrián Lemcke
Gary Vaynerchuk
Sonoro
Harvard Business School Online
Gartner

También te podría interesar

DataCamp
Kyle Polich
Tobias Macey
Jon Krohn
Changelog Media
Sam Charrington