AI可可AI生活

fly51fly

来自 @爱可可-爱生活 的第一手AI快报,用最简单易懂的语言,带你直击最前沿的人工智能科研动态。无论你是科技小白,还是行业达人,这里都有你想知道的AI故事和未来趋势。跟着我们,轻松解锁人工智能的无限可能! #人工智能 #科技前沿

  1. 5小時前

    [人人能懂] AI的协作、预算与感知新范式

    今天我们要聊的,不是AI模型又变大了多少,而是它们如何从内部变得更“聪明”。我们将看到,最新的论文如何教会AI从“指哪打哪”的工具,进化为能“懂你意思”的助手;又如何让强大的AI科学家学会“混圈子”,融入人类的协作生态。我们还会探讨,AI如何拥有“预算意识”,像个聪明的管家一样精打细算;以及当AI变小时,为什么最先退化的竟然是“眼力”而不是“脑力”。最后,我们还会揭秘AI“高考”中的乌龙事件,看看科学家们如何给AI的“评分尺”纠偏,这一切都指向了AI发展的新方向。 00:00:42 让电脑学会“指哪打哪”之后,我们如何教它“看懂”? 00:06:05 AI也能当科学家?关键要先学会“混圈子” 00:11:20 聪明的AI,是如何学会“省钱”的? 00:16:17 AI的“高考”,谁来检查试卷的错别字? 00:21:14 AI变笨的秘密:为什么“眼力”比“脑力”更脆弱? 本期介绍的几篇论文: [CV] SAM 3: Segment Anything with Concepts [Meta Superintelligence Labs] https://arxiv.org/abs/2511.16719 --- [AI] OmniScientist: Toward a Co-evolving Ecosystem of Human and AI Scientists [Tsinghua University] https://arxiv.org/abs/2511.16931 --- [LG] Budget-Aware Tool-Use Enables Effective Agent Scaling [Google Cloud AI Research & Google DeepMind & UC Santa Barbara] https://arxiv.org/abs/2511.17006 --- [LG] Fantastic Bugs and Where to Find Them in AI Benchmarks [Stanford University] https://arxiv.org/abs/2511.16842 --- [CV] Downscaling Intelligence: Exploring Perception and Reasoning Bottlenecks in Small Multimodal Models [Stanford University] https://arxiv.org/abs/2511.17487

    27 分鐘
  2. 1日前

    [人人能懂] 大模型根本局限、演化策略、认知框架与具身智能

    今天,我们不聊AI有多神奇,而是要给它来一次全面的“体检”,看看它那道看不见的“玻璃天花板”究竟在哪。接着,我们会颠覆你对AI训练的认知,看看它除了“上课”,如何像生物一样“演化”,以及它强大的推理能力背后,是否藏着一套需要我们帮它解锁的“思维地图”。最后,我们会发现,无论是教它解奥赛难题,还是教它做家务,最聪明的办法,可能都藏在我们自己的学习和生活经验里。准备好,让我们一起揭开AI光环背后的真实运作逻辑! 00:00:38 AI的玻璃天花板:为什么模型越大,犯的错越“自信”? 00:08:26 训练AI,除了“上课”还能“生娃”? 00:14:31 AI的“聪明”难题:为什么它能解奥数,却像个没头苍蝇? 00:21:39 AI的“题海战术”,跟我们有啥不一样? 00:27:36 一副眼镜,如何成为灵巧机器人的“私教”? 本期介绍的几篇论文: [LG] On the Fundamental Limits of LLMs at Scale [Stanford University & The University of Oklahoma] https://arxiv.org/abs/2511.12869 --- [LG] Evolution Strategies at the Hyperscale [FLAIR - University of Oxford & WhiRL - University of Oxford] https://arxiv.org/abs/2511.16652 --- [LG] Cognitive Foundations for Reasoning and Their Manifestation in LLMs [University of Illinois Urbana-Champaign & University of Washington & Princeton University] https://arxiv.org/abs/2511.16660 --- [LG] P1: Mastering Physics Olympiads with Reinforcement Learning [Shanghai AI Laboratory] https://arxiv.org/abs/2511.13612 --- [RO] Dexterity from Smart Lenses: Multi-Fingered Robot Manipulation with In-the-Wild Human Demonstrations [New York University & Meta] https://arxiv.org/abs/2511.16661

    34 分鐘
  3. 2日前

    [人人能懂] 从虚假纠错、全知指数到诗歌越狱

    我们总惊叹AI越来越聪明,但你有没有想过,它为什么也越来越会“一本正经地胡说八道”?我们又该如何教会它回归事物的本质,甚至理解整个物理世界的运行规律?而当一个AI变得如此强大时,为什么一句简单的诗,就能轻易攻破它的安全防线?今天,我们就从几篇最新论文出发,一起聊聊AI光环之下的真实面貌。 00:00:29 AI:一个既聪明又靠不住的“好学生” 00:05:23 AI画画:为什么“猜噪音”不如“看本质”? 00:10:13 为什么聪明的AI也爱“一本正经地胡说八道”? 00:14:35 AI当学霸:如何用一个模型,通晓万物运行之道 00:19:54 为什么AI大模型,偏偏就怕“文化人”? 本期介绍的几篇论文: [LG] Structural Inducements for Hallucination in Large Language Models [University of Maryland] https://www.researchgate.net/publication/397779918_Structural_Inducements_for_Hallucination_in_Large_Language_Models_An_Output-Only_Case_Study_and_the_Discovery_of_the_False-Correction_Loop_An_Output-Only_Case_Study_from_Extended_Human-AI_Dialogue_Str --- [CV] Back to Basics: Let Denoising Generative Models Denoise [MIT] https://arxiv.org/abs/2511.13720 --- [CL] AA-Omniscience: Evaluating Cross-Domain Knowledge Reliability in Large Language Models [Artificial Analysis] https://arxiv.org/abs/2511.13029 --- [LG] Walrus: A Cross-Domain Foundation Model for Continuum Dynamics [Flatiron Institute & University of Cambridge] https://arxiv.org/abs/2511.15684 --- [CL] Adversarial Poetry as a Universal Single-Turn Jailbreak Mechanism in Large Language Models [DEXAI – Icaro Lab] https://arxiv.org/abs/2511.15304

    26 分鐘
  4. 3日前

    [人人能懂] 当AI学会给自己出题、换引擎、当私教

    今天我们不只聊AI能做什么,更要揭秘它是“如何”做到的,聊聊那些让AI变得更聪明、更高效的“幕后机制”。我们将看到,AI如何像一个科研搭档一样与人协作,又如何通过一个巧妙的“飞轮”学会从一张照片脑补出三维世界。我们还会发现,AI怎样通过给自己出题、换上新引擎,甚至给自己当“私教”来实现自我进化,打破能力瓶颈。准备好了吗?让我们一起探寻这些驱动AI飞跃的精妙设计。 00:00:35 你的下一个同事,可能不是人 00:07:57 一张照片,一个世界:我们如何“脑补”出三维? 00:13:22 AI自己教自己,怎么才能不原地踏步? 00:18:06 AI造句新高速:换个引擎,解决堵车问题 00:22:49 AI的私教课:让聪明的芯片更聪明 本期介绍的几篇论文: [CL] Early science acceleration experiments with GPT-5 [OpenAI & University of Oxford] https://arxiv.org/abs/2511.16072 --- [CV] SAM 3D: 3Dfy Anything in Images [Meta Superintelligence Labs] https://arxiv.org/abs/2511.16624 --- [LG] Agent0: Unleashing Self-Evolving Agents from Zero Data via Tool-Integrated Reasoning [UNC-Chapel Hill] https://arxiv.org/abs/2511.16043 --- [LG] Breaking the Bottleneck with DiffuApriel: High-Throughput Diffusion LMs with Mamba Backbone [Mila – Quebec AI Institute & ServiceNow Research] https://arxiv.org/abs/2511.15927 --- [LG] AccelOpt: A Self-Improving LLM Agentic System for AI Accelerator Kernel Optimization [Stanford University & Amazon Web Services] https://arxiv.org/abs/2511.15915

    29 分鐘
  5. 5日前

    [人人能懂] 从视角切换、跨界偷师到耐心分步

    你有没有想过,让AI变得更聪明,不一定需要更强的算力,也许只需要换个“姿势”看问题?本期节目,我们将一起探索几篇最新论文,看看AI如何通过像艺术家一样思考、像高明的交通协管员一样调度、甚至像耐心的学生一样“分步走”,来解决那些曾经的无解难题。更神奇的是,我们还会发现,当AI学会结合语言和演示来猜测我们心思的时候,它其实也在教我们如何更有效地沟通。准备好了吗?让我们马上进入今天的前沿之旅。 00:00:36 换个姿势,AI也能像人一样思考? 00:05:29 AI画画,能不能别再“三班倒”了? 00:12:14 AI变聪明的秘密:不是更猛,而是更有耐心 00:16:54 AI训练场上的“交通协管员” 00:22:42 机器人“猜”心思的秘密 本期介绍的几篇论文: [CV] ARC Is a Vision Problem! [MIT] https://arxiv.org/abs/2511.14761 --- [CV] Diffusion As Self-Distillation: End-to-End Latent Diffusion In One Model [Peking University] https://arxiv.org/abs/2511.14716 --- [CV] Step by Step Network [Tsinghua University] https://arxiv.org/abs/2511.14329 --- [LG] Seer: Online Context Learning for Fast Synchronous LLM Reinforcement Learning [Moonshot AI] https://arxiv.org/abs/2511.14617 --- [RO] Masked IRL: LLM-Guided Reward Disambiguation from Demonstrations and Language [MIT CSAIL] https://arxiv.org/abs/2511.14565

    28 分鐘
  6. 11月18日

    [人人能懂] 从灵感溯源、速读秘诀到诚实AI

    你有没有想过,最顶尖的AI,它的智慧可能不是体现在无所不知,而是敢于坦诚地说出“我不知道”?本期节目,我们将一起探索AI如何学会这项宝贵的品质。我们还会揭秘,如何给AI装上一双“眼睛”让它在嘈杂派对里也能跟你轻松对话,如何用一个优美的公式教会它“速读”长篇报告,甚至让一份200页的PDF自己开口说话,并在一秒内找到AI画作的灵感“祖先”。准备好了吗?让我们一起进入AI更深邃、更智慧的内心世界。 00:00:39 AI画画的灵感,能秒速溯源吗? 00:06:29 大模型读书慢?给它一副聪明的“速读眼镜” 00:12:13 给AI一双眼睛,让它学会“察言观色” 00:16:37 AI的最高智慧,是承认自己不知道 00:22:56 如何让一份200页的PDF,自己开口说话? 本期介绍的几篇论文: [CV] Fast Data Attribution for Text-to-Image Models [CMU & Adobe Research & UC Berkeley] https://arxiv.org/abs/2511.10721 --- [LG] Optimizing Mixture of Block Attention [MIT] https://arxiv.org/abs/2511.11571 --- [CL] AV-Dialog: Spoken Dialogue Models with Audio-Visual Input [University of Washington & Meta AI Research] https://arxiv.org/abs/2511.11124 --- [LG] Honesty over Accuracy: Trustworthy Language Models through Reinforced Hesitation [Toyota Technological Institute at Chicago & University of California, San Diego] https://arxiv.org/abs/2511.11500 --- [CL] Information Extraction From Fiscal Documents Using LLMs [Google Inc & XKDR Forum] https://arxiv.org/abs/2511.10659

    29 分鐘

簡介

来自 @爱可可-爱生活 的第一手AI快报,用最简单易懂的语言,带你直击最前沿的人工智能科研动态。无论你是科技小白,还是行业达人,这里都有你想知道的AI故事和未来趋势。跟着我们,轻松解锁人工智能的无限可能! #人工智能 #科技前沿

你可能也會喜歡