Strachey Lectures

Oxford University

This series covers the Strachey Lectures, a series of termly computer science lectures named after Christopher Strachey, the first Professor of Computation at the University of Oxford. Hosted by the Department of Computer Science, University of Oxford, the Strachey Lectures began in 1995 and have included many distinguished speakers over the years. The Strachey Lectures are generously supported by OxFORD Asset Management.

  1. 02/12/2024

    From probabilistic bisimulation to representation learning via metrics

    Strachey Lecture: From probabilistic bisimulation to representation learning via metrics - Professor Prakash Panangaden Bisimulation is a fundamental equivalence relation in process theory invented by Robin Milner and with an elegant fixed-point definition due to David Park. In this talk I will review the concept of bisimulation and then discuss its probabilistic analogue. This was extended to systems with continuous state spaces. Despite its origin in theoretical work, it has proved to be useful in fields like machine learning, especially reinforcement learning. Surprisingly, it turned out that one could prove a striking theorem: a theorem that pins down exactly what differences one can "see" in process behaviours when two systems are not bisimilar. However, it is questionable whether a concept like equivalence is the right one for quantitative systems. If two systems are almost, but not quite, the same, bisimulation would just say that they are not equivalent. One would like to say in some way that they are "almost" the same. Metric analogues of bisimulation were developed to capture a notion of behavioral similarity rather than outright equivalence. These ideas have been adopted by the machine learning community and a bisimulation-style metric was developed for Markov decision processes. Recent work has shown that variants of these bisimulation metrics can be useful in representation learning. I will tell the tale of this arc of ideas in as accessible a way as possible.

    55 min
  2. 06/02/2024

    Strachey Lecture: From classical to non-classical stochastic shortest path problems

    Professor Christel Baier delivers the Hillary Term 2024 Strachey Lecture Abstract: The classical stochastic shortest path (SSP) problems asks to find a policy for traversing a weighted stochastic graph until reaching a distinguished goal state that minimizes the expected accumulated weight. SSP problems have numerous applications in, e.g., operations research, artificial intelligence, robotics and verification of probabilistic systems. The underlying graph model is a finite-state Markov decision process (MDP) with integer weights for its state-action pairs. Prominent results are the existence of optimal memoryless deterministic policies together with linear programming techniques and value and policy iteration to compute such policies and their values. These results rely on the assumption that the minimum under all proper policies that reach the goal state almost surely exists. Early work on the SSP problems goes back to the 1960s-1990s and makes additional assumptions. Complete algorithms that only require the existence of proper policies combine these techniques with a pre-analysis of end components, an elegant graph-theoretic concept for MDPs that has been introduced by de Alfaro in the late 1990s. The talk will start with a summary of these results. The second part of the talk presents more recent results for variants of the classical SSP. The conditional and partial SSP drop the assumption that the goal state must be reached almost surely and ask to minimize the expected accumulated weight under the condition that the goal will be reached (conditional SSP) resp. assign value 0 to all paths that do not reach the goal state (partial SSP). Other variants take into account aspects of risk-awareness, e.g., by studying the conditional value-at-risk or the variance-penalized expected accumulated weight. While the classical SSP problem is solvable in polynomial time, such non-classical SSP problems are computationally much harder. For the general case, the decidability status of such non-classical SSP problems is unknown, but they have been shown to be at least as hard as the Skolem problem (and even as the positivity problem). However, for non-positive weights, the conditional, partial and variance-penalized SSP problem are solvable in exponential time with a PSPACE lower bounds for acyclic MDPs Speaker bio: Christel Baier is a full professor and head of the chair for Algebraic and Logic Foundations of Computer Science at the Faculty of Computer Science of the Technische Universität Dresden since 2006. Since 2022 she holds an honorary doctorate (Dr. rer. nat. h.c.) from RWTH Aachen. From the University of Mannheim she received her Diploma in Mathematics in 1990, her Ph.D. in Computer Science in 1994 and her Habilitation in 1999. She was an associate professor for Theoretical Computer Science at the University of Bonn from 1999 to 2006. She was member of the DFG (German Research Foundation) review board for computer science from 2012 to 2019, and is a member of the DFG senate commission on Research Training Groups since 2020. Since 2011 she is a member of Academia Europaea. Her research focuses on modeling, specification and verification of reactive systems, quantitative analysis of stochastic systems, probabilistic model checking, temporal and modal logics and automata theory.

    57 min
  3. 13/11/2023

    Strachey Lecture: How Can Algorithms Help to Protect our Privacy

    In this term's Strachey lecture, Professor Monika Henzinger gives an introduction to differential privacy with an emphasis on differential private algorithms that can handle changing input data. Decisions are increasingly automated using rules that were learnt from personal data. Thus, it is important to guarantee that the privacy of the data is protected during the learning process. To formalize the notion of an algorithm that protects the privacy of its data, differential privacy was introduced. It is a rigorous mathematical definition to analyze the privacy properties of an algorithm – or the lack thereof. In this talk I will give an introduction to differential privacy with an emphasis on differential private algorithms that can handle changing input data. Monika Henzinger is a professor of Computer Science at the Institute of Science and Technology Austria (ISTA). She holds a PhD in computer science from Princeton University (New Jersey, USA), and has been the head of research at Google and a professor of computer science at EPFL and the University of Vienna. Monika Henzinger is an ACM and EATCS Fellow and a member of the Austrian Academy of Sciences and the German National Academy of Sciences Leopoldina. She has received several awards, including an honorary doctorate from TU Dortmund University, Two ERC Advanced Grant, the Leopoldina Carus Medal, and the Wittgensteinpreis, the highest science award of Austria. The Strachey Lectures are generously supported by OxFORD Asset Management

    55 min

Descrizione

This series covers the Strachey Lectures, a series of termly computer science lectures named after Christopher Strachey, the first Professor of Computation at the University of Oxford. Hosted by the Department of Computer Science, University of Oxford, the Strachey Lectures began in 1995 and have included many distinguished speakers over the years. The Strachey Lectures are generously supported by OxFORD Asset Management.

Altro da Oxford University

Potrebbero piacerti anche…