JCO Precision Oncology Conversations

JCO Precision Oncology Conversations is a monthly podcast featuring conversations with authors of clinically relevant and significant articles published in the JCO Precision Oncology journal. JCO Precision Oncology Conversations is hosted by the journal's social media editor, Dr. Abdul Rafeh Naqash.

  1. JCO PO Article Insights: Circulating Tumor DNA in Germ Cell Tumors

    28 ENE

    JCO PO Article Insights: Circulating Tumor DNA in Germ Cell Tumors

    In this JCO Precision Oncology Article Insights episode, host Dr. Jiasen He summaries the article, "Longitudinal Evaluation of Circulating Tumor DNA as a Prognostic Biomarker to Detect Molecular Residual Disease in Germ Cell Tumors," by Hassoun et al. TRANSCRIPT Jiasen He: Hello, and welcome to the JCO Precision Oncology Article Insights. I'm your host, Jiasen He, and today, we'll be discussing the JCO Precision Oncology article, "Longitudinal Evaluation of Circulating Tumor DNA as a Prognostic Biomarker to Detect Molecular Residual Disease in Germ Cell Tumors," by Dr. Rebecca Hassoun and colleagues. Traditionally, treatment response for solid tumors has relied on imaging, which focuses on visible anatomic changes in the tumor. However, imaging does not always reflect molecular or cellular changes and cannot detect microscopic disease, which is clinically important and often linked to relapse. Liquid biopsy, on the other hand, is minimally invasive and can be used for cancer monitoring by analyzing circulating biomarkers in biofluids such as blood. One type of liquid biopsy is circulating tumor DNA, or ctDNA, which measures small fragments of DNA released by tumor cells into the bloodstream. ctDNA can allow precise monitoring of tumor-specific mutations and be a powerful tool for assessing treatment responses. ctDNA has already been applied in clinical settings for cancers such as non-small cell lung cancer and breast cancer, etcetera. However, there is still limited data on the use of ctDNA for germ cell tumors. Germ cell tumors are the most common malignancy affecting men aged 15 to 35 years. Accurate risk stratification and disease monitoring is key to risk-adapted therapy, maximizing the chance of cure while minimizing side effects. One unique tool we use currently for diagnosis, staging, and monitoring is serum tumor markers, such as AFP, beta-hCG, and LDH. However, these markers have limitations, including false elevation in certain clinical scenarios, and studies have shown that they can be normal in up to 40 percent of patients with germ cell tumor. This creates an unmet need for other sensitive and specific biomarkers to improve patient care. In this paper, the authors investigated the use of ctDNA in a cohort of patients with germ cell tumor at various disease time points. They compared ctDNA results with traditional serum tumor markers to evaluate whether ctDNA can predict relapse and survival outcomes. This multi-institutional retrospective study included patients with stage I, II, and III germ cell tumors, primarily testicular cancer, who had at least one ctDNA test result. ctDNA was evaluated longitudinally at different time points, including pre-orchiectomy, during the molecular residual disease, or MRD, window, defined as 1 to 12 weeks post-orchiectomy but before primary therapy, and during the surveillance window, defined as more than 12 weeks post-orchiectomy or follow retroperitoneal lymph node dissection or post-chemotherapy. ctDNA analysis was performed using a tumor-informed 16 multiplex PCR next-generation sequencing assay. A total of 324 plasma samples were analyzed from 74 patients in this cohort. The majority had stage I disease, around 40 percent, and nonseminomatous histology, around 70 percent. 15 patients were evaluated in the pre-orchiectomy window, and only one patient tested negative for ctDNA. This patient had stage I disease. The authors further assessed ctDNA positivity in both the MRD window and surveillance window, evaluating its association with event-free survival. They found that ctDNA outperformed serum tumor markers in both settings. ctDNA positivity was associated with significantly worse event-free survival compared with ctDNA-negative patients. Among the 14 patients with stage II to III disease who had ctDNA assessed in both the MRD window and surveillance window, nine patients consistently had a negative ctDNA or converted from positive to negative over time. In contrast, five patients demonstrated persistent ctDNA positivity, and all of these patients subsequently relapsed. Among the 38 patients who had both ctDNA and serum tumor marker tests during the MRD window, nine patients showed discordant biomarker results. Of these, 6 patients were ctDNA-negative but serum tumor marker-positive, and one of them experienced recurrence. Three patients were ctDNA-positive but serum tumor marker-negative, and one of these patients also recurred. During the surveillance window, 46 patients had both biomarkers available, and 10 showed discordant results. Three patients were ctDNA-negative but serum tumor marker-positive, and none of them recurred. In contrast, all seven patients who were ctDNA-positive but serum tumor marker-negative experienced recurrence. This intriguing data strongly support the potential role of ctDNA in patients with stage I, II, and III germ cell tumors. However, as the authors noted, the retrospective nature of the study presents limitations, as treatment approaches, imaging schedules, and the timing of testing were not standardized, and ctDNA testing varies among participating institutions. Larger prospective trials with standardized protocols and long-term follow-up will be essential to validate these findings and determine how ctDNA can be reliably integrated into clinical practice. Thank you for tuning in to JCO Precision Oncology Article Insights. Don't forget to subscribe and join us next time as we explore more groundbreaking research shaping the future of oncology. The purpose of this podcast is to educate and to inform. This is not a substitute for professional medical care and is not intended for use in the diagnosis or treatment of individual conditions.  Guests on this podcast express their own opinions, experience, and conclusions. Guest statements on the podcast do not express the opinions of ASCO. The mention of any product, service, organization, activity, or therapy should not be construed as an ASCO endorsement.

    7 min
  2. Palbociclib in Tumors with CDKN2A Loss or Mutation

    7 ENE

    Palbociclib in Tumors with CDKN2A Loss or Mutation

    In this JCO Precision Oncology Article Insights episode, host Dr. Harold Nathan Tan summarizes "Palbociclib in Patients With Head and Neck Cancer and Other Tumors With CDKN2A Alterations: Results From the Targeted Agent and Profiling Utilization Registry Study" by Worden et al.  TRANSCRIPT Harold Nathan Tan: Welcome to JCO Precision Oncology Article Insights, where we explore research that is reshaping our understanding of cancer therapeutics. I'm your host, Harold Nathan Tan, and today's episode centers on the TAPUR study, an analysis that confronts a long-standing assumption in molecular oncology: namely, whether CDKN2A alterations create a therapeutic vulnerability that can be exploited by CDK4/6 inhibition with palbociclib. CDKN2A is one of the most frequently altered tumor suppressors across solid tumors. Its importance lies in its production of two proteins, p16 and p14, which serve as guardians of cell cycle progression. p16 directly inhibits CDK4 and CDK6, preventing phosphorylation of the RB protein and therefore blocking entry into S phase, whereas p14 stabilizes p53 by counteracting MDM2, enabling cells to pause or die in response to oncogenic stress. When CDKN2A is lost or mutated, these dual checkpoints collapse. CDK4/6 activity becomes unchecked, RB remains phosphorylated and inactive, and p53-mediated surveillance is blunted from a mechanistic standpoint. This creates a possible dependency on CDK4/6 signaling that could, in principle, be therapeutically reversed by palbociclib. The TAPUR study is a prospective phase 2 basket study designed to evaluate whether FDA-approved targeted agents can meaningfully benefit patients with advanced treatment-refractory cancers harboring specific genomic alterations. In this analysis, patients were eligible for palbociclib if their tumors carried CDKN2A loss or mutation and retained RB activity. Two cohorts were examined: one consisting of head and neck cancers, and another composed of a broad spectrum of tumor types that collectively shared the CDK2 alteration. The results from the head and neck cancer cohort are particularly intriguing. Among the 28 available patients, the study observed a disease control rate of 40%, surpassing the predefined threshold for a positive signal. Although the objective response rate was low at only 4% with one partial response, the durability of disease stabilization was clinically meaningful. However, the most important insight comes from examining which head and neck tumors benefited. The strongest and most durable disease control occurred in non-squamous malignancies, particularly salivary gland tumors such as adenocarcinoma, adenoid cystic carcinoma, and poorly differentiated parotid tumors, as well as in esthesioneuroblastoma. In contrast, classic head and neck squamous cell carcinoma rarely demonstrated sustained benefit. When progression-free survival was analyzed, non-squamous tumors achieved a median PFS of approximately 20 weeks compared to just eight weeks in squamous tumors. This divergence reflects deep biological differences. Many non-squamous head and neck cancers preserve an intact RB axis and rely on CDK4/6-driven cell cycle control as a core proliferative mechanism. By contrast, squamous tumors tend to accumulate a dense array of co-alterations that weaken or circumvent CDK4/6 dependency. Many squamous tumors also harbor disruptive TP53 mutations, removing essential checkpoint control and allowing the cell to bypass the growth-arresting effects of palbociclib. In other words, even though CDKN2A loss is present, CDK4/6 is no longer the dominant node controlling proliferation in these cancers, and the tumor simply finds other ways to drive cell cycle entry. One of the most thought-provoking findings from the TAPUR study involves esthesioneuroblastoma. Three patients with this rare tumor achieved durable disease control despite the lack of standardized systemic treatment options for this malignancy. Genomic analyses have shown that while esthesioneuroblastoma often carries TP53 or IDH2 mutations, a meaningful subset exhibits alterations in CDKN2A or related cell cycle regulators. The consistency of this disease stabilization observed in TAPUR may reflect a lineage-specific reliance on CDK4/6 signaling, opening the door for future exploration of CDK4/6 inhibitors in this orphan disease. In the histology-pooled cohort, which included 40 available patients across 18 tumor types, palbociclib did not achieve the disease control threshold required to declare activity, with only a disease control rate of 13% and an ORR of 5%. While a few isolated responses occurred, for instance in thymic carcinoma and B-cell lymphoma, the overall disease control rate was 13%, which failed to rise above what might be expected from the natural history of advanced refractory cancers. This outcome reinforces the principle that CDKN2A loss is not a universal predictor of CDK4/6 dependency. Many of the tumors represented in this cohort, such as pancreatic cancer, melanoma, and gastrointestinal malignancies, are well known to evolve multiple compensatory mechanisms that circumvent CDK4/6 as a critical proliferative node. The safety profile of palbociclib was consistent with its known hematologic toxicities. High rates of neutropenia, leukopenia, and thrombocytopenia were observed, along with one treatment-related death due to respiratory failure. In a setting where activity is limited to specific subgroups, these toxicities underscore the importance of careful patient selection and raise the bar for demonstrating clinically meaningful benefit, particularly in heavily pretreated populations. So what do these findings tell us about the broader landscape of precision oncology? First, they remind us that a mutation's functional role is dependent on the cellular and lineage context in which it occurs. CDKN2A loss may accelerate proliferation in many tumors, but the mechanism of that acceleration varies widely, and the degree to which a tumor relies on CDK4/6 signaling is anything but uniform. Second, the findings suggest that palbociclib monotherapy may hold meaningful and durable benefit in the subset of non-squamous head and neck cancers, particularly salivary gland malignancies and esthesioneuroblastoma. Third and perhaps most importantly, the results reinforce a growing consensus that the future of CDK4/6 inhibition in solid tumors lies not in monotherapy, but in rational combination strategies. CDK4/6 inhibitors have been shown to synergize with EGFR inhibitors, PIK3CA, and mTOR inhibitors, MEK inhibition, and even immune checkpoint blockade. These combinations aim to dismantle the compensatory pathways that allow tumors to escape CDK4/6 blockade and may unlock therapeutic potential in tumors that show limited sensitivity to monotherapy. Ultimately, the TAPUR findings challenge the notion that CDKN2A is a straightforward predictive biomarker. Instead, the study reveals CDKN2A as a biomarker whose meaning is modulated by tumor lineage, co-mutation status, and the broader regulatory circuit governing proliferation. Precision oncology must therefore move beyond single-gene interpretation towards integrated frameworks that situate genomic alterations within their biologic ecosystems. In some head and neck cancer subtypes, particularly non-squamous malignancies, that ecosystem appears amenable to CDK4/6 inhibition, and that insight, not the simplistic gene-to-drug match, represents the true value of the TAPUR analysis. Thank you for joining me for this episode of JCO Precision Oncology Article Insights. I'm Harold Nathan Tan, and I look forward to exploring more research that continues to refine how we understand and strategically exploit the vulnerabilities of cancer. The purpose of this podcast is to educate and to inform. This is not a substitute for professional medical care and is not intended for use in the diagnosis or treatment of individual conditions. Guests on this podcast express their own opinions, experience, and conclusions. Guest statements on the podcast do not express the opinions of ASCO. The mention of any product, service, organization, activity, or therapy should not be construed as an ASCO endorsement.

    9 min
  3. 17/12/2025

    FGFR3 Alteration Status and Immunotherapy in Urothelial Cancer

    JCO PO author Dr. Shilpa Gupta at Cleveland Clinic Children's Hospital shares insights into her article, "Fibroblast Growth Factor Receptor 3 (FGFR3) Alteration Status and Outcomes on Immune Checkpoint Inhibitors (ICPI) in Patients with Metastatic Urothelial Carcinoma". Host Dr. Rafeh Naqash and Dr. Gupta discuss how FGFR3 combined with TMB emerged as a biomarker that may be predictive for response to ICPI in mUC. TRANSCRIPT Dr. Rafeh Naqash: Hello and welcome to JCO Precision Oncology Conversations, where we bring you engaging conversations with authors of clinically relevant and highly significant JCO PO articles. I'm your host, Dr. Rafeh Naqash, podcast editor for JCO Precision Oncology and Associate Professor at the OU Health Stephenson Cancer Center. Today I am excited to be joined by Dr. Shilpa Gupta, Director of Genitourinary Medical Oncology at the Cancer Institute and co-leader of the GU Oncology Program at the Cleveland Clinic, and also lead author of the JCO PO article titled "Fibroblast Growth Factor Receptor 3 Alteration Status and Outcomes on Immune Checkpoint Inhibitors in Patients With Metastatic Urothelial Carcinoma." At the time of this recording, our guest's disclosures will be linked in the transcript. Shilpa, welcome again to the podcast. Thank you for joining us today. Dr. Shilpa Gupta: Thank you, Rafeh. Honor to be here with you again. Dr. Rafeh Naqash: It is nice to connect with you again after two years, approximately. I think we were in our infancy of our JCO PO podcast when we had you first time, and it has been an interesting journey since then. Dr. Shilpa Gupta: Absolutely. Dr. Rafeh Naqash: Well, excited to talk to you about this article that you published. Wanted to first understand what is the genomic landscape of urothelial cancer in general, and why should we be interested in FGFR3 alterations specifically? Dr. Shilpa Gupta: Bladder cancer or urothelial cancer is a very heterogeneous cancer. And while we find there is a lot of mutations can be there, you know, like BRCA1, 2, in HER2, in FGFR, we never really understood what is driving the cancer. Like a lot of old studies with targeted therapies did not really work. For example, we think VEGF can be upregulated, but VEGF inhibitors have not really shown definite promise so far. Now, FGFR3 receptor is the only therapeutic target so far that has an FDA approved therapy for treating metastatic urothelial cancer patients, and erdafitinib was approved in 2019 for patients whose tumors overexpressed FGFR3 mutations, alterations, or fusions. And in the landscape of bladder cancer, it is important because in patients with non-muscle invasive bladder cancer, about 70 to 80% patients can have this FGFR3. But as patients become metastatic, the alterations are seen in, you know, only about 10% of patients. So the clinical trials that got the erdafitinib approved actually used archival tumor from local cancer. So when in the real world, we don't see a lot of patients if we are trying to do metastatic lesion biopsies. And why it is important to know this is because that is the only targeted therapy available for our patients right now. Dr. Rafeh Naqash: Thank you for giving us that overview. Now, on the clinical side, there is obviously some interesting data for FGFR3 on the mutation side and the fusion side. In your clinical practice, do you tend to approach these patients differently when you have a mutation versus when you have a fusion? Dr. Shilpa Gupta: We can use the treatment regardless of that. Dr. Rafeh Naqash: I recently remember I had a patient with lung cancer, squamous lung cancer, who also had a synchronous bladder mass. And the first thought from multiple colleagues was that this is metastatic lung. And interestingly, the liquid biopsy ended up showing an FGFR3-TACC fusion, which we generally don't see in squamous lung cancers. And then eventually, I was able to convince our GU colleagues, urologists, to get a biopsy. They did a transurethral resection of this tumor, ended up being primary urothelial and synchronous lung, which again, going back to the FGFR3 story, I saw in your paper there is a mention of FGFR3-TACC fusions. Anything interesting that you find with these fusions as far as biology or tumor behavior is concerned? Dr. Shilpa Gupta: We found in our paper of all the patients that were sequenced that 20% had the pathognomonic FGFR3 alteration, and the most common were the S249C, and the FGFR3-TACC3 fusion was in 45 patients. And basically I will say that we didn't want to generate too much as to fusion or the differences in that. The key aspect of this paper was that historically there were these anecdotal reports saying that patients who have FGFR alterations or mutations, they may not respond well to checkpoint inhibitors because they have the luminal subtype. And these were backed by some preclinical data and small anecdotal reports. But since then, we have seen that, and that's why a lot of people would say that if somebody's tumor has FGFR3, don't give them immunotherapy, give them erdafitinib first, right? So then we had this Phase 3 trial called the THOR trial, which actually showed that giving erdafitinib before pembrolizumab was not better. That debunked that myth, and we are actually reiterating that because in our work we found that patients who had FGFR3 alterations or fusions, and if they also have TMB-high, they actually respond very well to single agent immunotherapy. And that is, I think, very important because it tells us that we are not really seeing that so-called potential of resistance to immunotherapy in these patients. So to answer your question, yeah, we did see those differences, but I wouldn't say that any one marker is more prominent. Dr. Rafeh Naqash: The analogy is kind of similar to what we see in lung cancer with these mutations called STK11/KEAP1, which are also present in some other tumors. And one of the questions that I don't think has been answered is when you have in lung cancer, if you extrapolate this, where doublet or single agent immunotherapy doesn't do as well in tumors that are STK11 mutated. But then if you have a high TMB, question is does that TMB supersede or trump the actual mutation? Could that be one reason why you see the TMB-high but FGFR3 altered tumors in your dataset responding or having better outcomes to immunotherapy where potentially there is just more neoantigens and that results in a more durable or perhaps better response to checkpoint therapy? Dr. Shilpa Gupta: It could be. But you know, the patients who have FGFR alterations are not that many, right? So we have already seen that just patients with TMB-high respond very well to immunotherapy. Our last podcast was actually on that, regardless of PD-L1 that was a better predictor of response to immunotherapy. So I think it's not clear if this is adding more chances of response or not, because either way they would respond. But what we didn't see, which was good, that if they had FGFR3, it's not really downplaying the fact that they have TMB-high and that patients are not responding to immunotherapy. So we saw that regardless, and that was very reassuring. Dr. Rafeh Naqash: So if tomorrow in your clinic you had an individual with an FGFR3 alteration but TMB-high, I guess one could be comfortable just going ahead with immunotherapy, which is what the THOR trial as you mentioned. Dr. Shilpa Gupta: Yes, absolutely. And you know, when you look at the toxicity profiles of pembrolizumab and erdafitinib, really patients really struggle with using the FGFR3 inhibitors. And of course, if they have to use it, we have to, and we reserve it for patients. But it's not an easy drug to tolerate. Currently the landscape is such that, you know, frontline therapy has now evolved with an ADC and immunotherapy combinations. So really if patients progress and have FGFR3 alterations, we are using erdafitinib. But let's say if there were a situation where a patient has had chemotherapy, no immunotherapy, and they have FGFR3 upregulation and TMB-high, yes, I would be comfortable with using only pembrolizumab. And that really ties well together what we saw in the THOR trial as well. Dr. Rafeh Naqash: Going to the clinical applications, you mentioned a little bit of this in the manuscript, is combination therapies. You alluded to it a second back. Everything tends to get combined with checkpoint therapy these days, as you've seen with the frontline urothelial, pembrolizumab with an ADC. What is the landscape like as far as some of these FGFR alterations are concerned? Is it reasonable to combine some of those drugs with immune checkpoint therapy? And what are some of the toxicity patterns that you've potentially seen in your experience? Dr. Shilpa Gupta: So there was indeed a trial called the NORSE trial. It was a randomized trial but not a comparative cohort, where they looked at FGFR altered patients. And when they combined erdafitinib plus cetrelimab, that did numerically the response rates were much higher than those who got just erdafitinib. So yeah, the combination is definitely doable. There is no overlapping toxicities. But unfortunately that combination has not really moved forward to a Phase 3 trial because it's so challenging to enroll patients with such kind of rare mutations on large trials, especially to do registration trials. And since then the frontline therapy has evolved to enfortumab vedotin and pembrolizumab. I know there is an early phase trial looking at a next generation FGFR inhibitor. There is a triplet combination looking in Phase 1 setting with a next generation FGFR inhibitor with EV-pembro. However, it's not a randomized trial. So you know, I worry about such kinds of combinations where we don't have a path for registration. And in the four patients that have been treated, four or five patients in the early phase as a part of basket

    19 min
  4. 26/11/2025

    JCO PO Article Insights: Genomic Risk Classifiers in Localized Prostate Cancer

    In this JCO Precision Oncology Article Insights episode, Natalie DelRocco summarizes "Genomic Risk Classifiers in Localized Prostate Cancer: Precise but Not Standardized" by Góes et al. published on September 10, 2025. TRANSCRIPT Natalie DelRocco: Hello and welcome to JCO Precision Oncology Article Insights. I'm your host, Natalie DelRocco, and today we will be discussing the editorial "Genomic Risk Classifiers in Localized Prostate Cancer: Precise but Not Standardized." This editorial by Góes, Li, and Chehrazi-Raffle, and Janopaul-Naylor et al. describes genomic risk classifiers, or GRCs, for patients with localized prostate cancer. Like any risk prediction model, GRCs are intended to help identify groups of patients that may benefit from less intense or more intense anticancer therapy. Risk prediction tools can be difficult to bring into clinical practice; they require a lot of validation. And as the authors describe, GRCs in localized prostate cancer are no exception. The authors of this editorial contextualize an article by Janopaul-Naylor et al., which attempts to retrospectively explore the clinical use of three available GRCs for localized prostate cancer: Decipher, Oncotype DX, and Prolaris. Each of these three GRCs is being used in clinical practice currently. In the original article, all three GRCs were associated with less intense therapy being prescribed in practice. However, the editorial authors note that this is likely selection bias due to the observational nature of the study design. It is conceivable that GRCs were more likely ordered to make decisions for patients who were already thought to be good candidates for less intensive therapy. Another weakness of the retrospective study design is that patient level covariates known to be associated with clinical prognosis in localized prostate cancer, such as staging, Gleason score, prostate specific antigen, were unavailable. The authors note that sampling bias may also be an issue. Uninsured patients are not included in the original article, and therefore may impede the ability to make conclusions about the association of GRC use with income level. The editorial authors highlight important study findings as well as these limitations, such as the heterogeneity of interventions following GRC result return. The Prolaris GRC was found to be associated with more surgical interventions, while the Decipher GRC was associated with more androgen deprivation therapy plus radiation. Additionally, patients with active surveillance were more likely to have a GRC in general ordered. While these conclusions are very interesting, the editorial authors note that further exploration and validation, given the retrospective study design and limitations outlined, are needed to fully understand the impact of GRCs in the practice of treating localized prostate cancer. Thank you for listening to JCO Precision Oncology Article Insights. Don't forget to give us a rating or a review and be sure to subscribe so that you never miss an episode. You can find all ASCO shows atasco.org/podcasts. The purpose of this podcast is to educate and to inform. This is not a substitute for professional medical care and is not intended for use in the diagnosis or treatment of individual conditions.  Guests on this podcast express their own opinions, experience, and conclusions. Guest statements on the podcast do not express the opinions of ASCO. The mention of any product, service, organization, activity, or therapy should not be construed as an ASCO endorsement.

    4 min
  5. 19/11/2025

    DLL3 and SEZ6 Expression in Neuroendocrine Carcinomas

    Authors Drs. Jessica Ross and Alissa Cooper share insights into their JCO PO article, "Clinical and Pathologic Landscapes of Delta-Like Ligand 3 and Seizure-Related Homolog Protein 6 Expression in Neuroendocrine Carcinomas"  Host Dr. Rafeh Naqash and Drs. Ross and Cooper discuss the landscape of Delta-like ligand 3 (DLL3) and seizure-related homolog protein 6 (SEZ6) across NECs from eight different primary sites. TRANSCRIPT Dr. Rafeh Naqash: Hello and welcome to JCO Precision Oncology Conversations, where we bring you engaging conversations with authors of clinically relevant and highly significant JCO PO articles. I'm your host, Dr. Rafeh Naqash, podcast editor for JCO PO and an Associate Professor at the OU Health Stephenson Cancer Center. Today, I'm excited to be joined by Dr. Jessica Ross, third-year medical oncology fellow at the Memorial Sloan Kettering Cancer Center, as well as Dr. Alissa Cooper, thoracic medical oncologist at the Dana-Farber Cancer Institute and instructor in medicine at Harvard Medical School. Both are first and last authors of the JCO Precision Oncology article entitled "Clinical and Pathologic Landscapes of Delta-like Ligand 3 and Seizure-Related Homolog Protein 6 or SEZ6 Protein Expression in Neuroendocrine Carcinomas." At the time of this recording, our guest disclosures will be linked in the transcript. Jessica and Alissa, welcome to our podcast, and thank you for joining us today. Dr. Jessica Ross: Thanks very much for having us. Dr. Alissa Cooper: Thank you. Excited to be here. Dr. Rafeh Naqash: It's interesting, a couple of days before I decided to choose this article, one of my GI oncology colleagues actually asked me two questions. He said, "Rafeh, do you know how you define DLL3 positivity? And what is the status of DLL3 positivity in GI cancers, GI neuroendocrine carcinomas?" The first thing I looked up was this JCO article from Martin Wermke. You might have seen it as well, on obrixtamig, a phase 1 study, a DLL3 bi-specific T-cell engager. And they had some definitions there, and then this article came along, and I was really excited that it kind of fell right in place of trying to understand the IHC landscape of two very interesting targets. Since we have a very broad and diverse audience, especially community oncologists, trainees, and of course academic clinicians and some people who are very interested in genomics, we'll try to make things easy to understand. So my first question for you, Jessica, is: what is DLL3 and SEZ6 and why are they important in neuroendocrine carcinomas? Dr. Jessica Ross: Yeah, good question. So, DLL3, or delta-like ligand 3, is a protein that is expressed preferentially on the tumor cell surface of neuroendocrine carcinomas as opposed to normal tissue. It is a downstream target of ASCL1, and it's involved in neuroendocrine differentiation, and it's an appealing drug target because it is preferentially expressed on tumor cell surfaces. And so, it's a protein, and there are several drugs in development targeting this protein, and then Tarlatamab is an approved bi-specific T-cell engager for the treatment of extensive-stage small cell lung cancer in the second line. SEZ6, or seizure-like homolog protein 6, is a protein also expressed on neuroendocrine carcinoma cell surface. Interestingly, so it's expressed on neuronal cells, but its exact role in neuroendocrine carcinomas and oncogenesis is actually pretty poorly understood, but it was identified as an appealing drug target because, similarly to DLL3, it's preferentially expressed on the tumor cell surface. And so this has also emerged as an appealing drug target, and there are drugs in development, including antibody-drug conjugates, targeting this protein for that reason. Dr. Alissa Cooper: Over the last 10 to 15 years or so, there's been an increasing focus on precision oncology, finding specific targets that actually drive the cancer to grow, not just within lung cancer but in multiple other primary cancers. But specifically, at least speaking from a thoracic oncology perspective, the field of non-small cell lung cancer has completely exploded over the past 15 years with the discovery of driver oncogenes and then matched targeted therapies. Within the field of neuroendocrine carcinomas, including small cell lung cancer but also other high-grade neuroendocrine carcinomas, there has not been the same sort of progress in terms of identifying targets with matched therapies. And up until recently, we've sort of been treating these neuroendocrine malignancies kind of as a monolithic disease process. And so recently, there's been sort of an explosion of research across the country and multiple laboratories, multiple people converging on the same open questions about why might patients with specific tumor biologies have different kind of responses to different therapies. And so first this came from, you know, why some patients might have a good response to chemo and immunotherapy, which is the first-line approved therapy for small cell lung cancer, and we also sort of extrapolate that to other high-grade neuroendocrine carcinomas. What's the characteristic of that tumor biology? And at the same time, what are other targets that might be identifiable? Just as Jesse was saying, they're expressed on the cell surface, they're not necessarily expressed in normal tissue. Might this be a strategy to sort of move forward and create smarter therapies for our patients and therefore move really into a personalized era for treatment for each patient? And that's really driving, I think, a lot of the synthesis of this work of not only the development of multiple new therapies, but really understanding which tumor might be the best fit for which therapy. Dr. Rafeh Naqash: Thank you for that explanation, Alissa. And as you mentioned, these are emerging targets, some more further along in the process with approved drugs, especially Tarlatamab. And obviously, DLL3 was something identified several years back, but drug development does take time, and readout for clinical trials takes time. Could you, for the sake of our audience, try to talk briefly about the excitement around Tarlatamab in small cell lung cancer, especially data that has led to the FDA approval in the last year, year and a half? Dr. Alissa Cooper: Sure. Yeah, it's really been an explosion of excitement over, as you're saying, the last couple of years, and work really led by our mentor, Charlie Rudin, had identified DLL3 as an exciting target for small cell lung cancer specifically but also potentially other high-grade neuroendocrine malignancies. Tarlatamab is a DLL3-targeting bi-specific T-cell engager, which targets DLL3 on the small cell lung cancer cells as well as CD3 on T cells. And the idea is to sort of introduce the cancer to the immune system, circumventing the need for MHC class antigen presentation, which that machinery is typically not functional in small cell lung cancer, and so really allowing for an immunomodulatory response, which had not really been possible for most patients with small cell lung cancer prior to this. Tarlatamab was tested in a phase 2 registrational trial of about 100 patients and demonstrated a response rate of 40%, which was very exciting, especially compared with other standard therapies which were available for small cell lung cancer, which are typically cytotoxic therapies. But most excitingly, more than even the response rate, I think, in our minds was the durability of response. So patients whose disease did have a response to Tarlatamab could potentially have a durable response lasting a number of months or even over a year, which had previously not ever been seen in this in the relapsed/refractory setting for these patients. I think the challenge with small cell lung cancer and other high-grade neuroendocrine malignancies is that a response to therapy might be a bit easier to achieve, but it's that durability. The patient's tumors really come roaring back quite aggressively pretty quickly. And so this was sort of the most exciting prospect is that durability of response, that long potential overall survival tail of the curve really being lifted up. And then most recently at ASCO this year, Dr. Rudin presented the phase 3 randomized controlled trial which compared Tarlatamab to physician's choice of chemotherapy in a global study. And the choice of chemotherapy did vary depending on the part of the world that the patients were enrolled in, but in general, it was a really markedly positive study for response rate, for progression-free survival, and for overall survival. Really exciting results which really cemented Tarlatamab's place as the standard second-line therapy for patients with small cell lung cancer whose disease has progressed on first-line chemo-immunotherapy. So that has been very exciting. This drug was FDA approved in May of 2024, and so has been used extensively since then. I think the adoption has been pretty widespread, at least in the US, but now in this global trial that was just presented, and there was a corresponding New England Journal paper, I think really confirms that this is something we really hopefully can offer to most of our patients. And I think, as we all know, that this therapy or other therapies like it are also being tested potentially in the first-line setting. So there was data presented with Tarlatamab incorporated into the maintenance setting, which also showed exciting results, albeit in a phase 1 trial, but longer overall survival than we're used to seeing in this patient population. And we await results of the study that is incorporating Tarlatamab into the induction phase with chemotherapy as well. So all of this is extraordinarily exciting for our patients to sort of move the needle of how many patients we can keep alive, feeling functional, feeling well, for as long as possible. Dr. Rafeh Naqash: Very exc

    27 min
  6. 29/10/2025

    Somatic Mutations of Colorectal Cancer by Birth Cohort

    In this episode of JCO PO Article Insights, host Dr. Jiasen He summarizes the article, "Somatic Mutation Profiles of Colorectal Cancer by Birth Cohort" by Gilad, et al published October 11, 2025. TRANSCRIPT Jiasen He: Hello, and welcome to the JCO Precision Oncology Article Insights. I am your host, Jiasen He, and today, we will be discussing the JCO Precision Oncology article, "Somatic Mutation Profiles of Colorectal Cancer by Birth Cohort," by Dr. Gilad and colleagues. Early-onset colorectal cancer is defined as colorectal cancer diagnosed before the age of 50. Several reports have suggested that early-onset colorectal cancer has unique characteristics. Compared with late-onset colorectal cancer, early-onset colorectal cancer cases are more commonly found in the distal colon or rectum, tend to be diagnosed at more advanced stages, and may display unfavorable histologic features. Although the overall incidence of colorectal cancer has declined in recent decades, the incidence of early-onset colorectal cancer continues to rise. This increase appears to be driven by birth cohort effects. The reasons behind this rise remain unclear but are likely multifactorial, involving changes in demographics, diet, lifestyle, environmental exposures, and genetic predisposition. At the same time, studies have shown conflicting results regarding whether there are differences in the mutation profiles between early-onset and late-onset colorectal cancer. Therefore, it is crucial to explore whether colorectal cancer somatic mutational landscape differs across birth cohorts, as this could provide important insight into generational shifts in colorectal cancer incidence. To address this question, the authors conducted a retrospective study to characterize the mutation spectrum of colorectal cancer across different birth cohorts. Consecutive colorectal cancer patients who underwent somatic next-generation sequencing at the University of Chicago pathology laboratory between 2015 and 2022 were retrospectively identified. Tumors were tested for 154 to 168 genes and categorized as either microsatellite stable or high according to established thresholds. Patients with hereditary cancer syndromes or inflammatory bowel disease were excluded. Participants were then grouped into birth cohorts by decades, as well as into two major groups: those born before 1960 and after 1960. Genes that were identified in at least 5% of the sample were selected and grouped into 10 canonical cancer signaling pathways. These genes and pathways were then included in the analysis to explore their association with colorectal cancer across different birth cohorts and age groups. A total of 369 patients were included in the study, with a median birth year of 1955 and a median age at colorectal cancer diagnosis of 62.9 years. 5.4% were identified as having microsatellite-high tumors. The median tumor mutational burden was 5 mutations per megabase for microsatellite-stable tumors and 57.7 mutations per megabase for microsatellite-high tumors. Patients with microsatellite-high tumors tended to have earlier birth years and were diagnosed at an older age. However, after adjusting for potential confounders, neither birth year nor age remained statistically significant. Similarly, after controlling for confounders, no significant associations were observed between birth year or age and mutation burden. In this cohort, APC, TP53, and KRAS were the most frequently mutated genes. No statistically significant differences in the prevalence of gene mutations were observed across birth cohorts. Correspondingly, the most affected signaling pathways were the Wnt, TP53, and (RTK)/RAS pathways. Similar to the gene-level finding, no significant differences in the prevalence of these pathways were identified among birth cohorts. When examining patients born before and after 1960, the authors found that the older birth cohorts were diagnosed at an older age and had higher tumor mutational burden. However, no significant differences were observed in any of the genes or pathways analyzed. Among microsatellite-stable tumors, 18.3% were classified as early-onset colorectal cancer, while 81.1% were late-onset colorectal cancer. Consistent with previous reports, early-onset colorectal cancers in this cohort were more likely to be left-sided and more common among more recent birth cohorts. However, no significant differences were identified in any of the examined genes or pathways when comparing early-onset to late-onset colorectal cancer. In this cohort, a higher prevalence of early-onset colorectal cancer was observed among more recent birth cohorts, consistent with previous reports. Still, no distinct mutational signature was identified between the early and late birth cohorts. The authors proposed that the lack of distinct mutational profile by age or birth cohort may be due to the limited number of key molecular pathways driving colorectal cancer. Although environmental exposures likely differ across generations, the downstream effects may have converged on similar biological mechanisms, leading to comparable somatic mutations across cohorts. Alternately, they proposed that the observed birth cohort differences in colorectal incidence may be driven by distinct mutation signatures, epigenetic alterations, or changes in the immune microenvironment rather than variations in canonical gene mutations. As the authors noted, given the retrospective nature of this study, its modest sample size, and the predominance of advanced-stage tumors, larger prospective studies are needed to validate these findings. In summary, this study found no significant differences in the mutational landscape of colorectal cancer across birth cohorts or age groups. The authors proposed that the generational shift in colorectal cancer incidence is unlikely to be driven by changes in the underlying tumor genomics. However, larger prospective studies are needed to validate these findings. Thank you for tuning in to JCO Precision Oncology Article Insights. Do not forget to subscribe and join us next time as we explore more groundbreaking research shaping the future of oncology. The purpose of this podcast is to educate and to inform. This is not a substitute for professional medical care and is not intended for use in the diagnosis or treatment of individual conditions. Guests on this podcast express their own opinions, experience, and conclusions. Guest statements on the podcast do not express the opinions of ASCO. The mention of any product, service, organization, activity, or therapy should not be construed as an ASCO endorsement.

    8 min
  7. 11/10/2025

    Areas of Uncertainty in Pancreatic Cancer Surveillance

    JCO PO author Dr. Bryson Katona at the University of Pennsylvania Perelman School of Medicine shares insights into his article, "Areas of Uncertainty in Pancreatic Cancer Surveillance: A Survey Across the International Pancreatic Cancer Early Detection (PRECEDE) Consortium" Host Dr. Rafeh Naqash and Dr. Katona discuss how, given differing guidelines as well as lack of detail about how PC surveillance should be performed, approaches to PC surveillance across centers often differs. TRANSCRIPT Naqash: Hello and welcome to JCO Precision Oncology Conversations, where we bring you engaging conversations with authors of clinically relevant and highly significant JCO PO articles. I am your host, Dr. Rafeh Naqash, podcast editor for JCO Precision Oncology and Associate Professor at the OU Health Stephenson Cancer Center at the University of Oklahoma. Today, I am thrilled to be joined by Dr. Bryson Katona, Director of the Gastrointestinal Cancer Genetics Program and Director of the Lynch Syndrome Program at the Penn Medicine's Abramson Cancer Center, and also lead author of the JCO PO article entitled "Areas of Uncertainty in Pancreatic Cancer Surveillance: A Survey Across the International Pancreatic Cancer Early Detection or PRECEDE Consortium." Bryson, thanks for joining us again. Dr. Bryson Katona: Well, thank you so much for having me. I appreciate the opportunity. Dr. Rafeh Naqash: It is exciting to see that this work will be presented concurrently with the upcoming CGA meeting. Dr. Bryson Katona: Yes, it has been a fantastic partnership between JCO PO and the CGA-IGC and their annual meeting. And for those who may not be familiar, the CGA-IGC is the Collaborative Group of the Americas on Inherited Gastrointestinal Cancer. It is basically a professional organization dedicated to individuals who have hereditary GI cancer risk and focusing on providing education, promoting research, and really bringing together providers in this space from not just throughout the US but from across the globe as well. Dr. Rafeh Naqash: That is exciting to hear the kind of work you guys are doing. These are definitely interesting, exciting things. Now, going to what you have published, it is an area that is very evolving in the space of cancer screening, cancer surveillance, especially for a very aggressive cancer such as pancreatic cancer. Could you tell us currently, what are the general consensus? I know there are a lot of differences between different guidelines or societies, but what are the some of the commonalities if we were to start there first for pancreas cancer screening? If you are not a GI oncologist, you may not be aware that there is something with regards to pancreas cancer screening. Could you give us an overview and a background on that? Dr. Bryson Katona: Yeah, I think that pancreatic cancer screening really is one of the most controversial areas of all cancer screening. Part of that controversy is just because all the guidelines, the many different guidelines that are out there, do not always match up with one another, which I think leads to a lot of confusion, not just for providers but for patients who are trying to go through this, and then also the insurance companies in trying to get these screening tests covered. You know, when we think about who is eligible for pancreatic cancer screening, you know, it is important that these are not average-risk individuals. So really, we are only offering screening to high-risk individuals. And those can include people that have a strong family history of pancreatic cancer without a germline genetic susceptibility that has been identified. And those individuals we refer to as having familial pancreatic cancer. And the other big cohort is those individuals that carry hereditary pancreatic cancer predisposition. These are due to cancer risk mutations in many different genes, including many of the breast cancer risk genes like BRCA1 and BRCA2, as well as ATM and PALB2, but then other genes such as the Lynch syndrome genes, and then some of the higher risk genes such as those leading to Peutz-Jeghers syndrome as well as FAM, which is due to CDKN2A mutations. Dr. Rafeh Naqash: Thank you for that. Again, another practical question, and this may or may not be exactly related to your specific topic here, but perhaps to some extent there might be an overlap. If I get a patient from a colleague, and I see people in the early-phase clinical trial setting, so many different tumors for novel drugs, and I find an individual with, let us say, lung cancer who has a pathogenic BRCA2, which is somatic, should I be worried about pancreas cancer screening in that individual? Or have we not met that threshold yet in that circumstance? Dr. Bryson Katona: A lot of times these variants or these genes that are associated with pancreatic cancer risk get picked up on the somatic tumor profiles. Now, you know, whether or not those are truly germline variants typically requires the next step of referring the patient for germline genetic testing. So you know, I would not screen or make any kind of screening choices based on a somatic variant alone, but nowadays germline testing is so easy, so efficient, and relatively cheap that it is easy enough to confirm whether or not these somatic hits are in fact just somatic or may confer some germline risk in addition. Dr. Rafeh Naqash: So from what I understand from what you have said, there is debate about it, but it is something that should be done or is important enough that you need to figure out a path moving forward. Was that one of the reasons why you performed this project through this very interesting consortium called the PRECEDE Consortium? Dr. Bryson Katona: Yeah, that was one of our main reasons for doing this. And for those who do not know about the PRECEDE Consortium, this is a very large international, multi-institutional organization really focused on reducing death and improving survival from pancreatic cancer, primarily through increased and more effective use of screening and early detection strategies. This is an international consortium. There are over 50 sites now with nearly 10,000 patients who are enrolled in the consortium. So it really is at this point the largest prospective study of individuals who are at high risk for pancreatic cancer who are undergoing screening. And you know, I think amongst all of us in the consortium, just amongst discussions between colleagues and then, you know, often times when I see patients that are transferring their care to Penn who maybe had their screening done in another center before, what we were realizing is that, you know, although we all do a lot of screening, it seems that people are doing it slightly differently. And it does not seem that there is a real consensus approach across all centers about how pancreatic cancer screening should really be done. And it is one thing if you are thinking comparing, okay, well, maybe in the US we do it differently than, you know, in Europe or in other locations, but even among centers within the United States, we were still seeing very large differences in how pancreatic cancer screening in high-risk individuals were done. And so that led us to really pursue this survey of pancreatic cancer screening practices across the PRECEDE Consortium. So for this survey, we actually have 57 centers who the survey was sent out to. As you know, surveys are oftentimes very difficult to get good response rates back on, but we were fortunate to have 54 of the 57, or 95% of the centers, actually get back to us about their screening practices for this particular project. Dr. Rafeh Naqash: That is good to know. I hope you did not have to use any kind of gift cards for people to respond to the survey. But nevertheless, you got the information that you needed. Could you tell us what are some of the common denominators that you did identify and some of the differences that you identified? From your perspective, it sounds like there is no established consensus guidelines. There are different societies that have different perspectives on it. So I am sure some of what you found will probably have implications in maybe creating some guidelines. Is that a fair statement? Dr. Bryson Katona: Definitely a fair statement, and we found some very interesting results. I think one important result is really just the heterogeneity in the consortium. And so even before we got into pancreatic cancer screening practices, we also, we were asking consortium sites, "At your particular site, who is the individual that is leading these in-depth discussions about pancreatic cancer screening?" And while about 50% of the sites had a gastroenterologist leading it, about a quarter of the sites had a medical oncologist, a quarter had a surgeon leading these discussions as well. And we also found heterogeneity in who is the physician or the provider actually ordering these screening tests, again, with multiple different specialties across the different sites. But really one of the main areas that we wanted to hone in and focus on was how the different pancreatic cancer screening guidelines were actually utilized in each of the particular centers. The biggest controversial area in the field is for the gene mutation carriers, whether or not we should be requiring that a family history of pancreatic cancer be present in order for those individuals to qualify for pancreatic cancer screening. And the reason that is so controversial, let us take an example of BRCA1 and BRCA2 carriers. Currently, if you look through the guidelines, NCCN and the ASGE guidelines recommend that really all BRCA2 carriers undergo pancreatic cancer screening regardless of whether or not there is a family history, starting at age 50. However, other guidelines such as the AGA guidelines, or the AGA Clinical Practice Statement, as well as guidelines from the CAPS consortium, do recommend

    17 min

Acerca de

JCO Precision Oncology Conversations is a monthly podcast featuring conversations with authors of clinically relevant and significant articles published in the JCO Precision Oncology journal. JCO Precision Oncology Conversations is hosted by the journal's social media editor, Dr. Abdul Rafeh Naqash.

Más de ASCO Podcasts

También te podría interesar