557 episodes

Real training for HVAC ( Heating, Ventilation, Air Conditioning and Refrigeration) Technicians. Including recorded tech training, interviews, diagnostics and general conversations about the trade.

HVAC School - For Techs, By Techs Bryan Orr

    • Business

Real training for HVAC ( Heating, Ventilation, Air Conditioning and Refrigeration) Technicians. Including recorded tech training, interviews, diagnostics and general conversations about the trade.

    Electrical Basics

    Electrical Basics

    This podcast is Bryan’s full-length electrical basics class for the Kalos technicians. He covers electrical theory and circuit basics.
    Volts, resistance, and amps all affect the behavior of electricity in circuits. These are also critical factors in electrical safety. Watts and kilowatts come from the multiplication of the volts and amps, though not every volt-amp does work; the power factor indicates how much work the volt-amps are actually doing. Some of the volt-amps are reactive (kVAR) and don’t do the real power of watts.
    Electrons move by interacting with other atoms. Substances can be conductors or insulators, and conductors have very few valence electrons, which move in and out of other atoms easily. Insulators have many valence electrons and are more stable. Insulators have high resistance, and conductors tend to have low resistance.
    Circuits consist of loads, switches, and power supplies. Loads actually do things and consist of light bulbs and motors. Switches pass power and don’t do work. Power supplies can be finite, like batteries, but also include transformers that take power from the utility company. Open circuits don’t move electricity, but closed circuits create a complete path that allows electrons to move. Electricity takes all available paths, not just the path of least resistance.
    Bryan also covers:
    Electricity and the body GFCIs and AFCIs Shock and arc flash protection Lockout/tagout Electricity and fall hazards Energy transfer Resistive vs. inductive loads Magnetism and flux Direct current (DC) vs. alternating current (AC) How power companies and generators work Open vs. short circuits “Path of least resistance” Tripping breakers Electrical units of measurement Step-up and step-down transformers Electrical frequency (hertz) Variable frequency drives (VFDs) Microfarads and capacitors Parallel and series circuits Becoming more proficient at reading diagrams  
    If you have an iPhone, subscribe to the podcast HERE, and if you have an Android phone, subscribe HERE.
    Check out our handy calculators HERE.

    • 1 hr 27 min
    Myth: Path of Least Resistance - Short #154

    Myth: Path of Least Resistance - Short #154

    In this short podcast, Bryan debunks the myth that electricity only takes the path of least resistance.
    It is true that more current will typically take paths of lower resistance; it’s much easier for more electrons to flow through a path with lower resistance, which is consistent with Ohm’s law. Ohm’s law states that a circuit will have higher current with you have lower resistance so long as the voltage stays the same. 
    In most cases, the voltage stays relatively constant; transformers don’t often need to limit their currents, so there usually isn’t a voltage drop. When power supplies are regulated, the voltage is usually fixed, not the amperage. As a result, dropping the resistance in a circuit will increase the current. 
    Ohm’s law holds true for both resistive and inductive loads. Inductive loads, however, are a bit tricky because the resistance isn’t constant. As motors spin faster, they create back EMF or impedance, which is magnetic resistance. The resistance only shows up once a motor, solenoid, or another electromagnetic component is energized; the resistance is much more dynamic.
    An electrical current takes ALL parallel paths, not just the path of least resistance. The current also stays proportional to the resistance, even when it takes paths of many different resistance values. Our bodies are also parallel paths, so there’s a risk of electric shock even though our bodies usually have much higher resistance than loads. Wet skin has less resistance than dry skin, so that’s why electricity and water are so dangerous to us; lower resistance means that more current can flow through our bodies. 
    If electricity ONLY took the path of least resistance, we wouldn’t be able to operate all the appliances and electrical components in our homes. The only prerequisite is an electrical potential (voltage).
     
    If you have an iPhone, subscribe to the podcast HERE, and if you have an Android phone, subscribe HERE.
    Check out our handy calculators HERE.

    • 10 min
    Dehumidification in Shoulder Seasons w/ Nikki

    Dehumidification in Shoulder Seasons w/ Nikki

    Nikki Krueger from Santa Fe Dehumidifiers returns to the podcast to talk about dehumidification equipment and strategies in the shoulder seasons (spring and fall). The shoulder seasons (and the weeks leading up to them) are when many homeowners begin to notice moisture problems in their homes.
    HVAC units and dehumidifiers should have a king-queen relationship. The HVAC unit is the king and controls the bulk of temperature and humidity during the day, but the dehumidifier can take care of the humidity when the king needs help. To remove moisture optimally, an HVAC unit needs longer runtimes and a cold evaporator coil. However, there will still likely be gaps in performance, and that’s when the dehumidifier can step in. 
    Proper equipment sizing can help us achieve better runtimes; we want to avoid oversizing the HVAC equipment, but oversizing is a bit less critical when it comes to installing dehumidifiers. The actual install configuration is more important when it comes to dehumidifiers (i.e., whether it takes supply or return air and ties into the supply or return).
    Dehumidification can be coupled with ventilation and filtration; ventilating dehumidifiers bring in outdoor air and should filter it before dehumidifying. The air mixing tends to occur in the dehumidifier, and the mixed, dehumidified air then moves into the supply airstream. 
    Nikki and Bryan also discuss:
    Condensating vents, walls, and equipment Modern homes, energy efficiency, and HVAC  Infiltration and the building envelope’s effect on humidity Effects of equipment sizing and wall/duct insulation Fan speed, air mixing, condensation, and humidity Andy Ask and Ken Gehring’s contributions and legacies Humidity from household habits and behaviors Santa Fe Oasis 105 features and operation  
    If you have an iPhone, subscribe to the podcast HERE, and if you have an Android phone, subscribe HERE.
    Check out our handy calculators HERE.

    • 58 min
    Time Management - Short #153

    Time Management - Short #153

    In this short podcast episode, Bryan gives some quick tips for time management. You can save a lot of time by prioritizing what really matters and delegating tasks.
    One of the simplest but most effective ways to manage your time is to use a calendar. You can even apply the calendar to your personal life; you can get into a habit of scheduling important appointments, deadlines, and tasks. Google Calendar also allows other people to see and interact with your schedule, so it’s a great tool for scheduling performance reviews, interviews, and meetings.
    When you prioritize things, think about the negative and positive impacts of each thing. The ones with the highest positive and negative impacts should take priority over things with less significant positive or negative impacts. Many of the major business initiatives take place in the slow season, and many of our urgent client issues take priority during the busy seasons.
    Delegating is also a critical task. Just because you can do something, that doesn’t mean you should do it. So, it often makes more sense to give someone a task if they’re uniquely qualified for it. If someone is uniquely qualified to do a task, then you can delegate that task to them. Delegating is NOT the same as passing work to someone else because you don’t want to do it. To delegate effectively, you need to assess qualifications and prioritize.
    On the management side, you can put processes in place that allow you to spend less time managing and more time doing meaningful things at work that you actually enjoy. Making videos and audio tutorials can make it easy to demonstrate processes and procedures within your company. Then, you can focus on leading by example, creating, and making everybody better overall.
     
    If you have an iPhone, subscribe to the podcast HERE, and if you have an Android phone, subscribe HERE.
    Check out our handy calculators HERE.

    • 15 min
    Become a Better Mentor w/ Eric Kaiser

    Become a Better Mentor w/ Eric Kaiser

    Eric Kaiser returns to the podcast to talk about how to become a better mentor. He explains the topic from the perspective of a mentor and a mentee.
    The goal of mentorship is to pass your knowledge on to someone else. When you give someone the knowledge to succeed in the HVAC/R trade, you move the trade forward and allow yourself to try new career opportunities when someone can replace you.
    Some of the most effective mentorship strategies establish the mentor as a guide rather than someone who spoon-feeds the mentee. Mentorship is about supporting discovery, which also builds the relationship between the mentor and mentee. Mentors can also learn from their mentees when they allow their mentees to discover the answers to their questions.
    Mentors can also benefit their mentees by talking about health, especially mental health. Those who have been in the trade a long time may know how to draw boundaries between their work and their personal lives; mentees can benefit from open discussions about those things, and it helps to know that their mentor cares for them. Good mentors help mentees prioritize their health and wellness and break mental health stigmas.
    Mentors can also share references to other possible teachers with their mentees. Those relationships are especially important for mentors who don’t have all the answers. Mentorship provides the context for training, and those connections provide as much context as possible. Mentors can also be mentees themselves, and those relationships are what really advance the trade. 
    Eric and Bryan also discuss:
    Online education vs. in-person mentorship The role of the apprentice or mentee The Socratic method Mentoring people about health and safety practices Bryan and Eric’s mentors Recognizing who mentors are and treating them appropriately  
    If you have an iPhone, subscribe to the podcast HERE, and if you have an Android phone, subscribe HERE.
    Check out our handy calculators HERE.

    • 43 min
    HVAC Measurement Types and Benefits

    HVAC Measurement Types and Benefits

    Eric Kaiser joins the HVAC School podcast to talk about HVAC measurement types and the benefits of taking each one. He also talks about point measurements and data trends.
    Point measurements include static pressure, voltage readings, and readings provided by gauges. We only take those measurements once. However, when you track those on several occasions over time, you can build data trends. Single-point measurements give us information about what is happening at the moment, but they don’t give us a long-term view of the system's health.
    Absolute and differential measurements also have different purposes entirely. Absolute measurements require us to compare a reading to a specific, unchanging reference point, but differentials compare one measurement to another.
    When we turn point measurements into trend measurements, we can see some degree of causation. Changes in data trends indicate that a problem occurred at a certain point in time and could be due to changes that coincided with the deviation from the norm. However, that’s intermittent trending that relies on us to take point measurements at spaced-out points in time. Continuous trending allows us to use sensors and test instruments that map changes constantly.
    At the end of the day, point measurements are like snapshots, and continuous data trends are like videos; the former only shows part of the picture, and the latter can help us solve more difficult problems by giving us a more complete idea of what’s happening.
    Eric and Bryan also discuss:
    Qualitative vs. quantitative measurements Filter restrictions and static pressure Gauge vs. atmospheric pressure Combined trend measurements How tool usage and calibration impact measurements Non-invasive testing Recorded data and sample frequency Comparative troubleshooting in spaces with similar equipment Resolution vs. accuracy vs. precision  
    If you have an iPhone, subscribe to the podcast HERE, and if you have an Android phone, subscribe HERE.
    Check out our handy calculators HERE.

    • 43 min

Top Podcasts In Business

NRK
Norges Bank Investment Management
Finansavisen
E24
Dine Penger
Nordnet

You Might Also Like

HVAC Know It All
Zack Psioda
Craig Migliaccio
Gil Cavey
CE
Bill Spohn