The Lattice (Official 3DHEALS Podcast)

3DHEALS

Welcome to the Lattice podcast, the official podcast for 3DHEALS. This is where you will find fun but in-depth conversations (by founder Jenny Chen) with technological game-changers, creative minds, entrepreneurs, rule-breakers, and more. The conversations focus on using 3D technologies, like 3D printing and bioprinting, AR/VR, and in silico simulation, to reinvent healthcare and life sciences. This podcast will include AMA (Ask Me Anything) sessions, interviews, select past virtual event recordings, and other direct engagements with our Tribe.While there is no rule for our podcast content, the only rule we follow is to provide our listeners with a maximized return on their attention and time investment.Follow us on Facebook, Twitter, and Instagram @3dheals, and check out the links in the show notes. 3DHEALS Links: https://linktr.ee/3dheals 🛑 Disclaimer The content of this podcast is for informational and educational purposes only and does not constitute medical, legal, or financial advice. The views and opinions expressed by the host and guests are their own and do not necessarily reflect those of their employers, affiliates, or any associated organizations. While we discuss emerging technologies in healthcare and 3D printing, listeners should consult qualified professionals before making decisions based on the information shared. The mention of specific companies, products, or technologies does not imply endorsement. This podcast may reference early-stage innovations and concepts that are not yet FDA-approved or commercially available. Always follow regulatory guidelines and ethical standards when applying new technologies in clinical or professional settings.

  1. Episode #105 | Jan 2026 News: ARPA-H Organ "Moonshots", Point-of-Care Manufacturing, and More

    JAN 26

    Episode #105 | Jan 2026 News: ARPA-H Organ "Moonshots", Point-of-Care Manufacturing, and More

    We track a month of fast-moving news in healthcare 3D printing, from organ-scale bioprinting programs and ARPA-H’s funding model to point-of-care tools already entering clinics. The throughline is clear: vascularization, immune compatibility, and scale are converging with real-world deployment. • UT Southwestern’s organoid-plus-bioprinting strategy for durable liver tissue • Carnegie Mellon’s consortium on vascularization, immune control, and scale • ARPA-H’s moonshot funding model is accelerating medical innovation • Aspect Biosystems and Novo Nordisk’s bet on curing diabetes • Cost shift from chronic management to curative therapies • Near-term point-of-care printing: Curify Labs and AZORG integrations • Key milestone to watch: functional vascular networks • Outlook as research, industry, and funding align Remember, this podcast is for educational and informational purposes only The views expressed do not constitute engineering, medical, or financial advice. The technologies and procedures discussed may not be commercially available or suitable for every case. Always consult with a qualified professional Shownotes: https://3dheals.com/lattice-news-arpa-h-organ-moonshots-point-of-care-manufacturing-and-more/ Send us a text Support the show Subscribe to our premium version and support the show. Follow us: Twitter Instagram Linkedin 3DHEALS Website Facebook Facebook Group Youtube channel About Pitch3D

    5 min
  2. Episode #104| 3DHEALS2026 JP Morgan San Francisco (Live Recording) - Invest in 3D

    JAN 17

    Episode #104| 3DHEALS2026 JP Morgan San Francisco (Live Recording) - Invest in 3D

    A crowded JP Morgan week can blur into noise, so we built a quieter stage to focus on what actually moves healthcare forward: 3D software‑planned care, on‑demand manufacturing, and proof that patients and payers can feel. Recorded live in San Francisco, this special episode brings founders and investors together to show how 3D data and advanced manufacturing are turning personalization into a scalable, measurable reality. We start with a rare blueprint for value in spine surgery: virtual planning, patient‑specific 3D printed implants, and post‑op analytics that cut two‑year reoperations by 74% while compressing lead times from eight weeks to eight days. From there, the conversation widens fast. Hear how microarray patches with five‑micron precision enable co‑delivery without co‑formulation and factory‑level scale; how therapeutic hardware draws on bone biology to reduce revisions; how personalized pessaries bring dental‑style business models to women’s health; and how drill‑free, patient‑specific dental implants fit in six days without a single turn of a drill. We also explore the frontier where human recovery meets robotics. A single bionic hand platform serves amputees and humanoid robots, translating human manipulation data into industrial automation while staying Medicare‑covered. On the R&D side, vascularized tissues and cryobioprinted models aim to fix translational failure by making complex biology reproducible and shippable. Structural biopolymer fibers unlock sutures, meshes, and sports medicine implants with clean‑room scale. A countertop system automates cell therapy final formulation so community hospitals can treat more patients safely. And a new biomanufacturing approach targets IVIG supply constraints by achieving human‑like B‑cell densities in ultrafast 3D printed bioreactors. We close with high‑viscosity inkjet that prints materials traditional jets can’t, powering durable dental parts and microneedle patches at true production speeds. Along the way, an investor panel compares notes on 2026: where exits might return, where non‑dilutive capital is shifting, and what it now takes to earn a check—clear end‑user value, defensible tech, and a distribution edge. If you care about medtech, bioprinting, cell and gene therapy delivery, or the future of personalized care, this is your field guide to what’s working right now. If this conversation sparks new ideas or a partnership you want to pursue, subscribe, share the episode with a colleague, and leave a quick review telling us which breakthrough you want to hear more about. Event speaker biographies: https://3dheals.com/life-in-3d-investing-in-the-next-frontier/ On-Demand Video (Pending publication): https://3dheals.com/courses/ Pitch 3D Application link: https://3dheals.com/pitch3d/ Send us a text Support the show Subscribe to our premium version and support the show. Follow us: Twitter Instagram Linkedin 3DHEALS Website Facebook Facebook Group Youtube channel About Pitch3D

    2h 10m
  3. Episode #103 | Design for Medical 3D Technology (Virtual Event)

    12/28/2025

    Episode #103 | Design for Medical 3D Technology (Virtual Event)

    Healthcare 3D printing is moving fast, and design is leading the way. In this episode, we explore how advanced CAD, simulation, and automation are enabling patient-specific implants, multi-material tissue-like structures, AI-powered prosthetics, and fully custom pediatric seating. Beyond the printer, human-centered design and smart workflows are turning ideas into devices that improve patient care.  We start with the biology. Orthopedic engineer Matthew Shomper of Not a Robot Engineering, LatticeRobot, and Allumin8 explains why stress shielding sets up decades of problems and shows how patient-specific scaffolds can be generated in minutes. Analyze intact versus defect states, compare strain fields, and synthesize a topology- and strain-matched lattice tuned to a person’s real loading. Swap patterns, change valency, target grafting, and even plan for resorbable polymers as bone fills in. It is a shift from “stronger” to “more biologically honest.” Then we open the toolbox. With volumetric and implicit design approaches explored by Rob MacCurdy at the University of Colorado Boulder’s Matter Assembly Computation Lab, design moves from surfaces to functions that define geometry, material, and behavior together. Think functional grading across a dogbone, gyroids blended between materials, or lattice struts whose composition varies along their length to steer buckling. The same logic can drive multiple printers and processes, enabling surgical models and tissue-like parts that span from soft to structural in a single build. The payoff comes at the point of care. In prosthetics, comfort is the foundation. Joshua Steer, Founder and CEO of Radii Devices, shows how data-driven rectification gives clinicians an informed starting point they can refine. Nathan Shirley of HP explains how automation turns that interface into a robust, production-ready socket with a single request. No brittle CAD models. No days in design. And in pediatric seating, Alexander Geht of Testa-Seat shows how lightweight, water-cleanable, fully custom supports help children eat with family, attend school, and travel without a van full of gear. Validation, reimbursement, and regulation still lag behind what is technically possible. But with open toolchains, integrated simulation, and outcomes data, patient-specific devices are moving from heroic one-offs to dependable care. Subscribe, share this with a clinician or engineer who should hear it, and tell us the one custom device you wish existed. What would you build next? Video On Demand  Send us a text Support the show Subscribe to our premium version and support the show. Follow us: Twitter Instagram Linkedin 3DHEALS Website Facebook Facebook Group Youtube channel About Pitch3D

    1h 42m
  4. Episode #102 | Can Bioprinting Reshape The Future of Immunology?

    12/19/2025

    Episode #102 | Can Bioprinting Reshape The Future of Immunology?

    We explore how to move IVIG from donor scarcity to on‑demand manufacturing with tissue‑engineered bioreactors, and why that shift could lower costs, expand access, and improve consistency. We dig into polyclonal advantages, regulatory guardrails, scaling plans, and what success would mean for complex biologics beyond antibodies. • Defining a bioreactor that recreates human tissue niches • Why polyclonal IVIG remains essential across 100+ conditions • Limits of donor‑dependent plasma supply and regional variability • Complex therapeutics as a new manufacturing category • Cost targets of 10–100x reduction and CapEx shrink • Coffee‑cup reactors and near‑term validation milestones • Quality metrics including pathogen panels and glycosylation • Donor variability, blending strategies, and future immortalization • Clinical impact of moving from rationing to earlier use • Funding update and industry partnerships Please listen to the disclaimer at the end of this podcast. Show notes: https://3dheals.com/episode-102-can-bioprinting-bioreactor-reshape-the-future-of-immunology/ About our guests: Dr. Melanie Matheu is an immunologist, inventor, and biotechnologist recognized for pioneering work in high-resolution tissue engineering and human immunology. She received her PhD in Physiology and Biophysics with a focus on Immunology from UC Irvine and completed postdoctoral training at VIB (Ghent University, Belgium) and UC San Francisco, where she specialized in 2-photon imaging and cellular immune responses. As founder of Prellis Biologics, Dr. Matheu brought forward laser-based tissue bioprinting to solve complex challenges in organ transplantation and therapeutic antibody discovery. She later co-founded Lyric Bio, where she serves as Chief Scientific Officer, advancing scalable biomanufacturing platforms and rapid human immune system modeling. Dr. Matheu has authored numerous peer-reviewed publications, holds multiple patents, and is a passionate advocate for innovation at the intersection of immunology and bioengineering. Kevin Shannon (Kayj) holds a degree in Molecular Biology from Princeton University and a MBA from Stanford Graduate School of Business. Kayj has held positions spanning the biotech ecosystem including start-ups, big pharma, venture capital, and consulting. As part of Corporate Strategy at Amgen, he worked with Amgen’s C-Suite to shape long-term strategy, built partnerships in novel therapeutic modalities, and led investments in emerging categories including cell & gene therapy, antibody engineering, single cell analysis, and quantum computing. Kayj has also consulted for multiple VC funds where he developed investment theses and performed Send us a text Support the show Subscribe to our premium version and support the show. Follow us: Twitter Instagram Linkedin 3DHEALS Website Facebook Facebook Group Youtube channel About Pitch3D

    42 min
  5. Episode #100 | 3D Printing and 3D Tech in Pediatric Cardiology (Live Recording)

    11/20/2025

    Episode #100 | 3D Printing and 3D Tech in Pediatric Cardiology (Live Recording)

    Imagine holding a child’s heart in your hands and seeing the exact path a surgeon must take before a single incision. That shift from uncertainty to clarity frames this conversation on how 3D printing, virtual reality, and advanced imaging are transforming pediatric cardiology. Our speakers show how AI-assisted segmentation, multimodality fusion, VR rehearsal, and rapid mixed-reality planning are reshaping preoperative strategy and improving communication with families. Sarah Ptashnik of Materialise opens with the modeling perspective, walking through how CT, MRI, echo, and cath-lab 3DRA are turned into precise hollow heart models that guide baffles, conduits, and catheter routes. Nicholas Jacobson of Tangible Vet Tech brings the design and device lens, sharing how voxel modeling, hemocompatible printing, and cross-species research accelerate innovation for complex repairs. Dr. Ravi Ashwath of Baylor College of Medicine and Christus Children’s Hospital explains how advanced MRI, CT, and VR planning shorten procedure time and help teams anticipate complications in demanding congenital cases. Dr. Shafkat Anwar of UCSF Benioff Children’s Hospitals expands on fusion imaging and mixed reality for high-risk interventions, while Dr. Jenny Zablah of Children’s Hospital Colorado highlights how 3D tools improve strategy for pulmonary vein stenosis and other complex anatomies. Together, they explore real cases in which 3D models reshaped surgical plans, revealed hazards that imaging alone missed, and enabled bench-testing of devices before entering the cath lab. The discussion covers sterilizable materials, device libraries, accuracy checks, and how VR and AR support rapid decision-making when there is no time to print. If you are building or refining a 3D program, you will find practical guidance on quality control, when to print versus stay digital, and how to scale these tools across a health system. 3D technologies are becoming the standard for safer, smarter, and more human cardiac care. See show notes and video highlights Send us a text Support the show Subscribe to our premium version and support the show. Follow us: Twitter Instagram Linkedin 3DHEALS Website Facebook Facebook Group Youtube channel About Pitch3D

    2h 2m
  6. Episode #99 | 3D Printing for Orthotics & Prosthetics (Virtual Event)

    11/14/2025

    Episode #99 | 3D Printing for Orthotics & Prosthetics (Virtual Event)

    Orthotics and prosthetics are entering a new era. Instead of hand-built devices that take days to shape and adjust, clinicians can now scan a limb, tune the geometry in software, and print a device that fits with impressive consistency. This episode explores how that shift is happening in real clinics and fabrication labs by hearing from experts who are shaping the future of digital O and P. We have Michael Schmitt of Prosthetic Plus , who has moved from traditional clinical practice into advanced additive manufacturing and now helps run a central fabrication site that blends MJF and FDM production. He explains how accurate scanning and thoughtful CAD design create devices that can be reprinted months later from the same file in a perfect new size. David Johnson of HP builds on this by showing how polymer Multi Jet Fusion has become a reliable platform for orthotics and prosthetics, offering durable materials, isotropic strength, and the throughput needed for large-scale production. Once the prints come off the build plate, Emilie Simpson of DyeMansion explains how they are transformed into smooth, hygienic, biocompatible devices through cleaning, surfacing, vapor smoothing, and deep-dye coloring. Her work shows why post-processing is essential for patient comfort and clinical durability. Finally, Tara Wright of Gillette Children’s Specialty Healthcare brings everything back to the patient. She shares a compelling case where her team scanned and printed a replacement UCBL that matched the feel of a worn original, cut fitting time dramatically, and performed well for more than fifteen months. Her experience demonstrates how digital production can raise consistency and reduce strain on clinicians. Together, these voices map out a practical path for clinics that want to adopt scan-to-print workflows. Start with accessible FDM printers to learn digital modification. Move to production with MJF through central fabrication or service bureaus. Scale when your volume, staffing, and materials align, and explore decentralized scanning with centralized manufacturing to broaden access. Whether you are a clinician, technician, engineer, or healthcare innovator, this conversation offers a clear look at how digital manufacturing is transforming O and P. Tune in to learn how these tools can deliver better fit, faster turnaround, and more equitable access for patients everywhere. On-Demand Course Link Youtube Highlights Event Write-up Send us a text Support the show Subscribe to our premium version and support the show. Follow us: Twitter Instagram Linkedin 3DHEALS Website Facebook Facebook Group Youtube channel About Pitch3D

    1h 48m
  7. Episode #98 | Meeting the Bioprinting Vascular Challenge: VoxCell CEO Dr. Karolina Valente

    11/04/2025

    Episode #98 | Meeting the Bioprinting Vascular Challenge: VoxCell CEO Dr. Karolina Valente

    In this episode, Dr. Karolina Valente, Founder and CEO of VoxCell BioInnovation, discusses her journey in biotechnology, focusing on 3D bioprinting and its impact on cancer research and drug discovery. She shares insights into her leadership at VoxCell, the company's growth, and the accolades it has received. Dr. Valente also talks about the importance of partnerships, the future of biotechnology, and her personal experiences that drive her passion for innovation. Questions answered: How did Karolina first get involved with entrepreneurship and founding VoxCell BioInnovation?What was it like to start a career across multiple continents? (From Brazil to Canada)How to switch the hat from a scientist to a company founder?What were some of the early milestones in the VoxCell journey that were impactful to the company today?What is the core technology of the 3D bioprinting platform at VoxCell?How does VoxCell’s technology address the Vascular Challenge in cancer research?What kind of data do you provide in preclinical studies, and how does it compare to animal models?How does Karolina navigate and build company culture at VoxCell?What advice does Karolina have for young entrepreneurs and students in school? See full show notes, links, and resources. Send us a text Support the show Subscribe to our premium version and support the show. Follow us: Twitter Instagram Linkedin 3DHEALS Website Facebook Facebook Group Youtube channel About Pitch3D

    1h 5m

Ratings & Reviews

5
out of 5
2 Ratings

About

Welcome to the Lattice podcast, the official podcast for 3DHEALS. This is where you will find fun but in-depth conversations (by founder Jenny Chen) with technological game-changers, creative minds, entrepreneurs, rule-breakers, and more. The conversations focus on using 3D technologies, like 3D printing and bioprinting, AR/VR, and in silico simulation, to reinvent healthcare and life sciences. This podcast will include AMA (Ask Me Anything) sessions, interviews, select past virtual event recordings, and other direct engagements with our Tribe.While there is no rule for our podcast content, the only rule we follow is to provide our listeners with a maximized return on their attention and time investment.Follow us on Facebook, Twitter, and Instagram @3dheals, and check out the links in the show notes. 3DHEALS Links: https://linktr.ee/3dheals 🛑 Disclaimer The content of this podcast is for informational and educational purposes only and does not constitute medical, legal, or financial advice. The views and opinions expressed by the host and guests are their own and do not necessarily reflect those of their employers, affiliates, or any associated organizations. While we discuss emerging technologies in healthcare and 3D printing, listeners should consult qualified professionals before making decisions based on the information shared. The mention of specific companies, products, or technologies does not imply endorsement. This podcast may reference early-stage innovations and concepts that are not yet FDA-approved or commercially available. Always follow regulatory guidelines and ethical standards when applying new technologies in clinical or professional settings.