Arxiv Papers

[QA] Easing Optimization Paths: a Circuit Perspective

The paper explores using mechanistic interpretability to enhance gradient descent training in AI, aiming to reduce compute costs and mitigate harmful behaviors through efficient learning curricula.

https://arxiv.org/abs//2501.02362

YouTube: https://www.youtube.com/@ArxivPapers

TikTok: https://www.tiktok.com/@arxiv_papers

Apple Podcasts: https://podcasts.apple.com/us/podcast/arxiv-papers/id1692476016

Spotify: https://podcasters.spotify.com/pod/show/arxiv-papers