AI可可AI生活

[人人能懂] 从不对称数据、自我审视到代码世界模型

今天我们来聊聊,怎样才能更聪明地培养一个AI,而不只是一味地堆砌数据和算力。我们会探讨,AI的“童年教育”怎样才能事半功倍?它又是如何学会像我们一样“先打草稿再修改”来提升工作效率的?从把AI变成程序员,到解开它“长考”反而犯错的谜团,再到给训练过程安装“涡轮增压”,最新几篇论文将刷新你对AI学习方式的认知。

00:00:32 AI界的“鸡娃”指南

00:05:12 AI写作提速:先打草稿,再一笔修正

00:09:32 让AI下棋?不如让它当个“规则翻译官”

00:14:52 AI“长考”之后,为什么反而会出错?

00:20:56 AI训练的快车道:最后一层,我们算出来

本期介绍的几篇论文:

[LG] Front-Loading Reasoning: The Synergy between Pretraining and Post-Training Data  

[NVIDIA & CMU]  

https://arxiv.org/abs/2510.03264 

---

[LG] Self-Speculative Masked Diffusions  

[Google DeepMind]  

https://arxiv.org/abs/2510.03929 

---

[LG] Code World Models for General Game Playing  

[Google DeepMind]  

https://arxiv.org/abs/2510.04542 

---

[LG] Understanding the Role of Training Data in Test-Time Scaling  

[University of Southern California & University of California Los Angeles]  

https://arxiv.org/abs/2510.03605 

---

[LG] Closed-Form Last Layer Optimization  

[Google Deep & Mind University of Tubingen & Secondmind]  

https://arxiv.org/abs/2510.04606