今天我们来聊聊,怎样才能更聪明地培养一个AI,而不只是一味地堆砌数据和算力。我们会探讨,AI的“童年教育”怎样才能事半功倍?它又是如何学会像我们一样“先打草稿再修改”来提升工作效率的?从把AI变成程序员,到解开它“长考”反而犯错的谜团,再到给训练过程安装“涡轮增压”,最新几篇论文将刷新你对AI学习方式的认知。
00:00:32 AI界的“鸡娃”指南
00:05:12 AI写作提速:先打草稿,再一笔修正
00:09:32 让AI下棋?不如让它当个“规则翻译官”
00:14:52 AI“长考”之后,为什么反而会出错?
00:20:56 AI训练的快车道:最后一层,我们算出来
本期介绍的几篇论文:
[LG] Front-Loading Reasoning: The Synergy between Pretraining and Post-Training Data
[NVIDIA & CMU]
https://arxiv.org/abs/2510.03264
---
[LG] Self-Speculative Masked Diffusions
[Google DeepMind]
https://arxiv.org/abs/2510.03929
---
[LG] Code World Models for General Game Playing
[Google DeepMind]
https://arxiv.org/abs/2510.04542
---
[LG] Understanding the Role of Training Data in Test-Time Scaling
[University of Southern California & University of California Los Angeles]
https://arxiv.org/abs/2510.03605
---
[LG] Closed-Form Last Layer Optimization
[Google Deep & Mind University of Tubingen & Secondmind]
https://arxiv.org/abs/2510.04606
Thông Tin
- Chương trình
- Tần suấtHằng ngày
- Đã xuất bảnlúc 00:10 UTC 8 tháng 10, 2025
- Thời lượng26 phút
- Xếp hạngSạch