AI可可AI生活

[人人能懂] 从大脑设计图、全局一致性到随机探索的价值

这一期,我们将一起探索AI的“大脑”有没有可能像一张能被看懂的设计图,并看看AI如何反过来帮我们给维基百科“捉虫”。接着,我们会聊聊当AI“人多力量大”时,如何聪明地选出最佳方案,以及机器人模仿人类动作时,到底什么才是精髓。最后,一个颠覆性的发现会告诉我们:训练AI解题高手,最“笨”的方法有时竟然是最好的方法。

00:00:31 AI的“大脑”长啥样?一份来自未来的设计图

00:06:05 维基百科这位“巨人”,也会自己打自己吗?

00:10:22 人多不一定力量大,除非你懂得怎么选

00:14:43 机器人模仿秀:差的那口气,终于有人补上了

00:20:22 高手之路:有时,“最笨”的方法就是最好的方法

本期介绍的几篇论文:

[LG] The Dragon Hatchling: The Missing Link between the Transformer and Models of the Brain  

[Pathway]  

https://arxiv.org/abs/2509.26507  

---

[CL] Detecting Corpus-Level Knowledge Inconsistencies in Wikipedia with Large Language Models  

[Stanford University]  

https://arxiv.org/abs/2509.23233  

---

[LG] The Unreasonable Effectiveness of Scaling Agents for Computer Use  

[Simular Research]  

https://arxiv.org/abs/2510.02250  

---

[RO] OmniRetarget: Interaction-Preserving Data Generation for Humanoid Whole-Body Loco-Manipulation and Scene Interaction  

[Amazon FAR]  

https://arxiv.org/abs/2509.26633  

---

[LG] Random Policy Valuation is Enough for LLM Reasoning with Verifiable Rewards  

[Hong Kong University of Science and Technology & Kuaishou Technology]  

https://arxiv.org/abs/2509.24981