AI可可AI生活

[人人能懂] 从本质创造、跨界通感到无知之智

本期节目,我们将潜入AI的“思想厨房”,看看它如何像分子料理大师一样,在抽象的“风味空间”里低成本地创造出绝妙品味。我们还会揭秘AI的“通感”天赋,探索为何只“读书”的AI,竟能通过代码和数学“看懂”世界。更进一步,我们将见证AI世界里“侦探”与“法官”的诞生,看两种AI如何协作,确保推理的铁证如山。最后,我们将探讨一种让AI学会“无知之智”的深刻方法,明白承认“不知道”为何是更高级的智慧,让我们马上开始!

00:00:39 “造句”不如“造意”:一种让AI低成本学会“好品味”的新方法

00:05:12 AI界的“万能诊断仪”:大道至简,用“读心术”取代“望闻问切”

00:10:22 AI的“通感”:只“读书”的AI,为何能“看懂”世界?

00:15:26 AI当“侦探”,谁来当“法官”?—— 一种让AI的推理靠谱起来的新方法

00:20:35 AI的“无知之智”:最高级的智慧,是承认“我不知道”

[CL] Limited Preference Data? Learning Better Reward Model with Latent Space Synthesis  

[University of Wisconsin-Madison & Nanyang Technological University]  

https://arxiv.org/abs/2509.26074  

---

[CL] Regression Language Models for Code  

[Cornell University & Google]  

https://arxiv.org/abs/2509.26476  

---

[LG] Learning to See Before Seeing: Demystifying LLM Visual Priors from Language Pre-training  

[Meta Superintelligence Labs]  

https://arxiv.org/abs/2509.26625  

---

[LG] Towards Verified Code Reasoning by LLMs  

[University of Texas at Austin & Google DeepMind]  

https://arxiv.org/abs/2509.26546  

---

[CL] TruthRL: Incentivizing Truthful LLMs via Reinforcement Learning  

[Meta Reality Labs]  

https://arxiv.org/abs/2509.25760