今天我们来聊聊,为什么AI的创意越来越像“标准答案”,仿佛陷入了一个巨大的“蜂巢思维”?我们将探讨如何跳出这个怪圈,让AI学会使用计算器进行事实核查,甚至培养出程序员般的代码“审美”。更进一步,我们会揭示AI学习的两种反常识秘诀:一是故意让它犯“高质量”的错误,二是用“分而治之”的策略去攻克马拉松式的超长任务。从思维定式到品味养成,再到学习心法,本期将带你看到AI如何变得更“聪明”,也更“人性化”。
00:00:39 人工智能的“标准答案”陷阱
00:05:54 让AI裁判学会用“计算器”
00:10:37 想让AI更聪明?先教它犯“高质量”的错
00:15:05 让AI学会“好看”:一个程序员的品味是如何炼成的
00:19:42 想跑赢马拉松?别从第一步开始练
本期介绍的几篇论文:
[CL] Artificial Hivemind: The Open-Ended Homogeneity of Language Models (and Beyond)
[University of Washington]
https://arxiv.org/abs/2510.22954
---
[CL] Incentivizing Agentic Reasoning in LLM Judges via Tool-Integrated Reinforcement Learning
[Google Cloud AI Research]
https://arxiv.org/abs/2510.23038
---
[LG] BugPilot: Complex Bug Generation for Efficient Learning of SWE Skills
[Cornell University & University of California San Diego & University of North Carolina at Chapel Hill]
https://arxiv.org/abs/2510.19898
---
[CL] Code Aesthetics with Agentic Reward Feedback
[Microsoft Research Asia]
https://arxiv.org/abs/2510.23272
---
[LG] Transitive RL: Value Learning via Divide and Conquer
[UC Berkeley]
https://arxiv.org/abs/2510.22512
Информация
- Подкаст
- ЧастотаЕжедневно
- Опубликовано29 октября 2025 г. в 01:05 UTC
- Длительность27 мин.
- ОграниченияБез ненормативной лексики
