AI可可AI生活

[人人能懂] 化繁为简、趋利避害、知行合一

本期节目,我们将一起打开一个“AI智慧工具箱”,看看几篇最新论文如何为我们揭示AI思考的底层秘密。我们将探讨,AI如何用一把名为“柯尔莫哥洛夫复杂度”的终极尺子去寻找最简单的答案,又为何在真实世界中,学会“探路”远比“背地图”更重要。我们还会看到,科学家们如何从急诊室的真实病例中,为进入物理世界的机器人设计“驾照考试”。最后,我们会拆解代码这颗“大力丸”的补脑秘方,并揭示AI是如何通过“双核大脑”训练,同时拥有深思考和快反应这两种超能力的。

00:00:44 AI的“奥卡姆剃刀”:如何找到那个最简单也最深刻的答案?

00:06:25 AI学“规划”:背地图和自己探路,哪个更高明?

00:11:52 AI“下凡”入世:我们如何教会机器人“趋利避害”?

00:17:20 AI的“大力丸”:代码里究竟藏着什么“补脑”秘方?

00:22:06 鱼与熊掌如何兼得?让AI拥有“深思考”和“快反应”

本期介绍的几篇论文:

[LG] Bridging Kolmogorov Complexity and Deep Learning: Asymptotically Optimal Description Length Objectives for Transformers  

[Google DeepMind & Google Research]  

https://arxiv.org/abs/2509.22445  

---

[LG] Benefits and Pitfalls of Reinforcement Learning for Language Model Planning: A Theoretical Perspective  

[Microsoft Research Asia & Peking University]  

https://arxiv.org/abs/2509.22613  

---

[LG] Can AI Perceive Physical Danger and Intervene?  

[Google DeepMind Robotics]  

https://arxiv.org/abs/2509.21651  

---

[CL] On Code-Induced Reasoning in LLMs  

[Carnegie Mellon University (CMU)]  

https://arxiv.org/abs/2509.21499  

---

[CL] Dual-Head Reasoning Distillation: Improving Classifier Accuracy with Train-Time-Only Reasoning  

[Google]  

https://arxiv.org/abs/2509.21487