今天,我们将一起探索AI那些不为人知的“内心世界”和“隐藏技能”。我们将揭示AI如何“感知”到那些它放弃了的“平行世界”,又如何区分自己是“真的不懂”还是“问题太复杂”。同时,我们还会看看它如何通过“开卷考试”和在“梦境健身房”里训练,突破我们想象的效率极限。这些最新论文,正在颠覆我们对AI效率、智能甚至“坦诚”的传统认知。
00:00:34 AI加速生成:快与好的两难,如何破局?
00:07:26 AI的“遗忘”与“再利用”:一份被浪费的宝藏
00:12:42 AI的“内心戏”:它知道自己放弃了什么吗?
00:18:00 AI的专属健身房:让它在梦里学会真本事
00:23:35 AI的“我不知道”,你真的读懂了吗?
本期介绍的几篇论文:
[LG] Optimal Inference Schedules for Masked Diffusion Models
[Harvard & UW]
https://arxiv.org/abs/2511.04647
---
[CL] Reusing Pre-Training Data at Test Time is a Compute Multiplier
[Apple & Stanford]
https://arxiv.org/abs/2511.04234
---
[CL] Are language models aware of the road not taken? Token-level uncertainty and hidden state dynamics
[Stanford University & Goodfire & NTT Research]
https://arxiv.org/abs/2511.04527
---
[LG] Scaling Agent Learning via Experience Synthesis
[Meta Superintelligence Labs]
https://arxiv.org/abs/2511.03773
---
[LG] The Illusion of Certainty: Uncertainty quantification for LLMs fails under ambiguity
[Technical University of Munich]
https://arxiv.org/abs/2511.04418
Information
- Show
- FrequencyUpdated Daily
- PublishedNovember 8, 2025 at 3:48 AM UTC
- Length30 min
- RatingClean
