AI可可AI生活

fly51fly

来自 @爱可可-爱生活 的第一手AI快报,用最简单易懂的语言,带你直击最前沿的人工智能科研动态。无论你是科技小白,还是行业达人,这里都有你想知道的AI故事和未来趋势。跟着我们,轻松解锁人工智能的无限可能! #人工智能 #科技前沿

  1. HÁ 17 H

    [人人能懂] 更少数据、更小大脑、更强智能

    本期节目,我们将一起探索几个让AI更聪明的“反常识”妙招,全是来自最新论文的硬核洞察。我们会发现,为什么有时候“躺平”学习的AI反而会考砸,而主动扔掉海量数据却能让模型更强。我们还会聊聊,如何通过给AI的大脑做个“剪枝”手术来激发创造力,或者请个“陪练”帮它领悟世界的规律。最后,你将看到,只需几个简单的“二选一”,就能让AI“秒懂”你的独特品味。 00:00:35 AI训练的迷思:躺得平,就一定学得好吗? 00:05:52 喂养AI的新姿势:为什么聪明人要主动扔掉一部分数据? 00:12:31 AI绘画:是天才画手,还是像素级的复印机? 00:18:54 给AI请个“陪练”,为什么能让它更聪明? 00:24:25 让AI“秒懂”你的心思,需要几步? 本期介绍的几篇论文: [LG] Flat Minima and Generalization: Insights from Stochastic Convex Optimization [Tel Aviv University] https://arxiv.org/abs/2511.03548 --- [LG] Why Less is More (Sometimes): A Theory of Data Curation [Concordia University & FAIR at Meta] https://arxiv.org/abs/2511.03492 --- [LG] Provable Separations between Memorization and Generalization in Diffusion Models [Northwestern University & Georgia Institute of Technology] https://arxiv.org/abs/2511.03202 --- [CV] Generative Hints [Stanford University & California Institute of Technology] https://arxiv.org/abs/2511.02933 --- [LG] Inference-Time Personalized Alignment with a Few User Preference Queries [MPI-SWS & Visa & CMU] https://arxiv.org/abs/2511.02966

    30min
  2. HÁ 1 DIA

    [人人能懂] 从精细拆解、到自我进化,再到高情商协作

    你有没有想过,最聪明的AI不仅要会解题,更要懂得如何省钱、如何团队协作、甚至如何避免“摸鱼”吗?本期节目,我们将一口气解读几篇最新论文,看看AI如何通过精细的“拆解”来降本增效,如何组建“AI教练天团”实现自我进化,又是如何学会“察言观色”,从一个笨拙的工具,变身为高情商的队友。准备好了吗?让我们一起揭开AI“人情世故”的秘密。 00:00:32 为什么你的AI服务又贵又慢?答案藏在一个“拆”字里 00:05:48 AI当教练,一句话教会AI当车神 00:11:58 AI学会了“省钱”,这对我们有什么启发? 00:17:43 AI也会摸-鱼?一个团队的智慧,是怎么被“猪队友”拖垮的 00:23:55 如何让你的AI助理,从“笨蛋”变“高情商”? 本期介绍的几篇论文: [LG] From Models to Operators: Rethinking Autoscaling Granularity for Large Generative Models [Rice University & Microsoft Research] https://arxiv.org/abs/2511.02248 --- [LG] Automated Reward Design for Gran Turismo [University of Montreal & Turing Inc. & Sony AI] https://arxiv.org/abs/2511.02094 --- [LG] Re-FORC: Adaptive Reward Prediction for Efficient Chain-of-Thought Reasoning [AWS Agentic AI] https://arxiv.org/abs/2511.02130 --- [LG] Unlocking the Power of Multi-Agent LLM for Reasoning: From Lazy Agents to Deliberation [The Pennsylvania State University & Harvard University & Michigan State University] https://arxiv.org/abs/2511.02303 --- [LG] Training Proactive and Personalized LLM Agents [CMU] https://arxiv.org/abs/2511.02208

    30min
  3. HÁ 2 DIAS

    [人人能懂] AI的动态思维、可塑信念与捷径法则

    你真的了解那个天天与你对话的AI吗?这一期,我们来当一回“AI读心师”,带你换个全新的视角看AI。我们会潜入AI思考的“时间之河”,揭示它那颗会悄悄“变心”的内在。更重要的是,我们将看到几篇最新论文,是如何教会AI聪明地“抄近道”、真正地“辨因果”,并最终找到那个任你怎么问都不会动摇的“坚固答案”的。 00:00:30 AI的“时间盲区”:我们看懂它的方式,可能一开始就错了 00:05:35 那个天天陪你聊天的AI,正在悄悄“变心” 00:11:23 高手过招:如何聪明地“抄近道”? 00:16:33 想用AI解决数据难题?你得先学会给它“立规矩” 00:23:46 换个姿势再问一遍:如何找到最可靠的答案? 本期介绍的几篇论文: [LG] Priors in Time: Missing Inductive Biases for Language Model Interpretability [Goodfire AI & Harvard University] https://arxiv.org/abs/2511.01836 --- [CL] Accumulating Context Changes the Beliefs of Language Models [CMU & Princeton University] https://arxiv.org/abs/2511.01805 --- [RO] SLAP: Shortcut Learning for Abstract Planning [Princeton University & CMU] https://arxiv.org/abs/2511.01107 --- [LG] A Technical Exploration of Causal Inference with Hybrid LLM Synthetic Data [UC Berkeley] https://arxiv.org/abs/2511.00318 --- [CL] Self-Harmony: Learning to Harmonize Self-Supervision and Self-Play in Test-Time Reinforcement Learning [The University of Tokyo & RIKEN Center for Advanced Intelligence Project] https://arxiv.org/abs/2511.01191

    29min
  4. HÁ 3 DIAS

    [人人能懂] 从模拟汤味、坚守初心到组建科研公司

    你有没有想过,当AI不再只是一个反应飞快的万事通,而是开始学会“举一反三”,甚至拥有自己的“原则”和“工作流程”时,会发生什么?这一期,我们将看到AI如何自己“开公司”搞科研,又如何建立“中央厨房”模式,用一份力气解决一百个问题。我们还会探讨,如何训练AI坚守原则“不忘初心”,以及它如何模仿人类顶尖专家,像一位真正的科学家那样思考。准备好,让我们一起探寻AI智能正在发生的深刻变革。 00:00:38 AI的“一叶知秋”:模型需要读多长的书,才能举一反三? 00:05:47 AI的“自我修养”:如何让它学会“不忘初心”? 00:10:36 AI的尽头,是开公司? 00:14:53 AI的“中央厨房”模式 00:20:24 AI当专家,这次可能真不是吹牛 本期介绍的几篇论文: [LG] Quantitative Bounds for Length Generalization in Transformers   [NEC Labs America & Princeton University & UC Berkeley]   https://arxiv.org/abs/2510.27015  --- [LG] Consistency Training Helps Stop Sycophancy and Jailbreaks   [Google]   https://arxiv.org/abs/2510.27062  --- [LG] The Denario project: Deep knowledge AI agents for scientific discovery   [Flatiron Institute & University of Cambridge & Universitat Autonoma de Barcelona]   https://arxiv.org/abs/2510.26887  --- [LG] Panprediction: Optimal Predictions for Any Downstream Task and Loss   [CMU & UC Berkeley & Columbia University]   https://arxiv.org/abs/2510.27638  --- [LG] Glia: A Human-Inspired AI for Automated Systems Design and Optimization   [MIT CSAIL]   https://arxiv.org/abs/2510.27176

    28min
  5. HÁ 4 DIAS

    [人人能懂] 从结构稀疏、自我博弈到过程奖励

    我们总觉得AI的发展就是更大、更强、更耗电,但今天我们要聊点不一样的。本期节目,我们将看到科学家们如何用一系列“四两拨千斤”的巧思,解决AI发展中的大难题。我们会聊到,如何向我们自己的眼睛“偷师”给AI一个天生好骨架,如何让AI自己给自己出题实现永动式学习,甚至如何通过一个被遗忘的“开关”和打上“过程分”,让训练事半功倍。这些最新论文的洞见,不仅关乎技术,更是一堂堂关于如何聪明解决问题的思维课。 00:00:38 AI瘦身指南:向你的眼睛“偷”个师 00:05:32 AI的终极自学法:如何自己给自己出题? 00:10:35 AI训练场上的“鬼打墙”:一个被遗忘的开关如何解决大问题 00:15:36 AI写作的“两难”:如何让机器既懂“感觉”又懂“规矩”? 00:20:28 AI也需要“过程分”:从“废料”里炼金 本期介绍的几篇论文: [LG] Topographical sparse mapping: A neuro-inspired sparse training framework for deep learning models [University of Surrey] https://www.sciencedirect.com/science/article/pii/S0925231225024129 --- [CL] SPICE: Self-Play In Corpus Environments Improves Reasoning [FAIR at Meta] https://arxiv.org/abs/2510.24684 --- [LG] Defeating the Training-Inference Mismatch via FP16 [Sea AI Lab] https://arxiv.org/abs/2510.26788 --- [LG] CANDI: Hybrid Discrete-Continuous Diffusion Models [Purdue University & Google DeepMind] https://arxiv.org/abs/2510.22510 --- [CL] Repurposing Synthetic Data for Fine-grained Search Agent Supervision [Alibaba Group] https://arxiv.org/abs/2510.24694

    26min
  6. HÁ 5 DIAS

    [人人能懂] 从开机自检、群体智能到概率硬件

    你有没有想过,AI在开口说话前,心里在想什么?本期节目,我们就来当一回AI的“读心师”和“行为设计师”。我们会聊聊,如何一句话让AI“闭嘴”省下千万电费;怎么让一群普通AI协作起来超越天才;甚至,如何引导它进行自我审视,吐露“内心独白”。准备好了吗?让我们一起潜入AI的奇妙心智。 00:00:29 AI开口的第一个瞬间,藏着省钱的秘密 00:05:32 AI界的“大众点评”:如何让三个臭皮匠,炼成一个诸葛亮? 00:12:42 换个姿势搞AI,能耗降低一万倍? 00:18:26 AI的“神来之笔”,原来可以被设计 00:23:44 AI的“内心戏”:当我们让它审视自己时,会发生什么? 本期介绍的几篇论文: [CL] Do Stop Me Now: Detecting Boilerplate Responses with a Single Iteration   [JFrog]   https://arxiv.org/abs/2510.22679  --- [CL] Fortytwo: Swarm Inference with Peer-Ranked Consensus   [Fortytwo]   https://arxiv.org/abs/2510.24801  --- [LG] An efficient probabilistic hardware architecture for diffusion-like models   [Extropic Corporation]   https://arxiv.org/abs/2510.23972  --- [CL] Evaluating In Silico Creativity: An Expert Review of AI Chess Compositions   [Google DeepMind & University of Oxford]   https://arxiv.org/abs/2510.23772  --- [CL] Large Language Models Report Subjective Experience Under Self-Referential Processing   [AE Studio]   https://arxiv.org/abs/2510.24797

    32min
  7. HÁ 6 DIAS

    [人人能懂] 从异步思考、复古架构到教练式学习

    这一期,我们不谈AI的“体型”,只聊它的“智商”。最新的几篇论文告诉我们,让AI变聪明的关键,可能不是堆数据,而是教它如何像项目经理一样组织思考,像学霸一样按课程表学习。我们还会发现,AI的记忆可能不是死记硬背,而是在脑中绘制地图,甚至需要一位“贴身教练”来指导它成长。准备好,一起窥探AI更聪明的大脑是如何炼成的! 00:00:31 AI也懂分工了?聪明人是怎样“外包”思考的 00:06:49 想让AI变聪明?先送它去上数学课 00:11:55 AI世界的“复古”潮流:被冷落的武功秘籍,为何突然又香了? 00:17:31 如何把学霸“掰开揉碎”,喂给一个普通模型? 00:23:54 AI的记忆之谜:它是在死记硬背,还是在脑中画地图? 本期介绍的几篇论文: [LG] The Era of Agentic Organization: Learning to Organize with Language Models   [Microsoft Research]   https://arxiv.org/abs/2510.26658  --- [CL] Reasoning Curriculum: Bootstrapping Broad LLM Reasoning from Math   [Salesforce AI Research & University of California, Los Angeles]   https://arxiv.org/abs/2510.26143  --- [LG] Encoder-Decoder or Decoder-Only? Revisiting Encoder-Decoder Large Language Model   [Google DeepMind]   https://arxiv.org/abs/2510.26622  --- [CL] Supervised Reinforcement Learning: From Expert Trajectories to Step-wise Reasoning   [Google Cloud AI Research]   https://arxiv.org/abs/2510.25992  --- [LG] Deep sequence models tend to memorize geometrically; it is unclear why   [Google Research & CMU]   https://arxiv.org/abs/2510.26745

    30min
  8. 31 DE OUT.

    [人人能懂] 从内功心法、内心戏到学习公式

    本期节目,我们将一起深入AI的大脑,看看它究竟是如何思考的。我们会发现,AI不仅会修炼“内功心法”,以小博大;还会上演复杂的“内心戏”,让我们难辨其思考的真伪。我们还会揭开它通用的“学习公式”,看看聪明的AI为何会掉入“聪明陷阱”,以及它最终如何学会替我们高效地“试错”。 00:00:32 AI的“内功心法”:让小模型拥有大智慧的秘密 00:05:52 AI的“内心戏”:你看到的思考过程,有多少是“演”的? 00:10:49 AI的“聪明陷阱”:为什么懂得多,反而容易犯错? 00:16:26 揭秘AI的“学习公式”:原来万变不离其宗 00:21:32 让AI替你“试错”,我们能省下多少力气? [CL] Scaling Latent Reasoning via Looped Language Models [ByteDance Seed] https://arxiv.org/abs/2510.25741 --- [LG] Can Aha Moments Be Fake? Identifying True and Decorative Thinking Steps in Chain-of-Thought [Northeastern University & UC Berkeley] https://arxiv.org/abs/2510.24941 --- [CL] Are Language Models Efficient Reasoners? A Perspective from Logic Programming [ETH Zürich & EPFL] https://arxiv.org/abs/2510.25626 --- [CL] Language Model Behavioral Phases are Consistent Across Architecture, Training Data, and Scale [MIT & UCSD] https://arxiv.org/abs/2510.24963 --- [LG] GPTOpt: Towards Efficient LLM-Based Black-Box Optimization [MIT] https://arxiv.org/abs/2510.25404

    27min

Sobre

来自 @爱可可-爱生活 的第一手AI快报,用最简单易懂的语言,带你直击最前沿的人工智能科研动态。无论你是科技小白,还是行业达人,这里都有你想知道的AI故事和未来趋势。跟着我们,轻松解锁人工智能的无限可能! #人工智能 #科技前沿

Você também pode gostar de