#072 ML Татьяна Шаврина. Бенчмарки для LLM или как оценивать большие языковые модели?

Machine Learning Podcast

В гостях сегодня Татьяна Шаврина, старший научный сотрудник Института Языкознания РАН. Обсуждаем бенчмарки - стандартизированные наборы тестов, метрик и протоколов оценки, предназначенные для объективного измерения производительности больших языковых моделей. Что произошло в индустрии за последние 4 года с момента записи предыдущего выпуска? Все ли проявления естественного интеллекта можно наблюдать у искусственного? Как автоматизировать науку? Как и для чего автоматически проверять новые архитектуры сетей на разных доменах? Скоро ли агентные системы начнут выигрывать у людей kaggle-соревнования? Как ИИ-учёные ддосят учёных-людей? Зачем большим языковым моделям сдавать выпускные экзамены на бакалавра? Как не допустить того, чтобы разработчики бенчмарков и больших моделей договорились? Какие проблемы существуют у современных решений? Почему к OpenAI всегда так много претензий? Кто и как придумывает бенчмарки? Придумали ли бенчмарк для определения, что AGI уже здесь? Если заработал сто миллиардов долларов, то уже AGI? Где взять бенчмарки, если ты не OpenAI? Почему высокие метрики на бенчмарках могут не являться решающим фактором при выборе модели под свою задачу? Обо всём этом и многом другом в выпуске!

Ссылки выпуска:

Телеграм-канал Татьяны (https://t.me/rybolos_channel)

Буду благодарен за обратную связь!

Подписывайтесь на телеграм-канал "Стать специалистом по машинному обучению" (https://t.me/toBeAnMLspecialist)

Обо мне (https://t.me/toBeAnMLspecialist/935)

Мой телеграм для связи (https://t.me/kmsint)

Также со мной можно связаться по электронной почте: kms101@yandex.ru

Я сделал бесплатный курс по созданию телеграм-ботов на Python и aiogram на Степике (https://stepik.org/120924). Присоединяйтесь, если хотите научиться разрабатывать телеграм-ботов и вообще вести проекты на Python!

Также в соавторстве с крутыми разработчиками я пишу курс по продвинутой разработке телеграм-ботов с элементами микросервисной архитектуры (https://stepik.org/a/153850?utm_source=mlpodcast&utm_campaign=ep_72).

Выразить благодарность можно добрым словом и/или донатом (https://www.tinkoff.ru/rm/kryzhanovskiy.mikhail11/NkwE718878/)

若要收聽兒少不宜的單集,請登入帳號。

隨時掌握此節目最新消息

登入或註冊後,即可追蹤節目、儲存單集和掌握最新資訊。

選取國家或地區

非洲、中東和印度

亞太地區

歐洲

拉丁美洲與加勒比海地區

美國與加拿大