16 episodes

Learn about quantum mechanics, black holes, dark matter, plasma, particle accelerators, the Large Hadron Collider and other key Theoretical Physics topics. The Rudolf Peierls Centre for Theoretical Physics holds morning sessions consisting of three talks, pitched to explain an area of our research to an audience familiar with physics at about second-year undergraduate level.

Theoretical Physics - From Outer Space to Plasma Oxford University

    • Education

Learn about quantum mechanics, black holes, dark matter, plasma, particle accelerators, the Large Hadron Collider and other key Theoretical Physics topics. The Rudolf Peierls Centre for Theoretical Physics holds morning sessions consisting of three talks, pitched to explain an area of our research to an audience familiar with physics at about second-year undergraduate level.

    The spaghettification of stars by supermassive black holes: understanding one of nature’s most extreme events

    The spaghettification of stars by supermassive black holes: understanding one of nature’s most extreme events

    The spaghettification of stars by supermassive black holes: understanding one of nature’s most extreme events - Andrew Mummery On a rare occasion an unfortunate star will be perturbed onto a near-radial orbit about the supermassive black hole in its galactic centre. Upon venturing too close to the black hole the star is destroyed, in its entirety, by the black hole’s gravitational tidal force, a process known as “spaghettification”. Some of the stellar debris subsequently accretes onto the black hole, powering bright flares which are observable at cosmological distances. In this talk I will discuss recent theoretical developments which allow us to describe the observed emission from these extreme events in detail, allowing them to be used as probes of the black holes at their centre. I am a Leverhulme-Peierls Fellow in the Department of Physics and Merton College. I completed both my undergraduate degree and DPhil at Oxford, working for my DPhil in the astrophysics department under the supervision of Steven Balbus. I work on astrophysical fluid dynamics, with a particular focus on the behaviour of fluids when they are very close to black holes.

    • 39 min
    Extreme value statistics and the theory of rare events

    Extreme value statistics and the theory of rare events

    Extreme value statistics and the theory of rare events - Francesco Mori Rare extreme events tend to play a major role in a wide range of contexts, from finance to climate. Hence, understanding their statistical properties is a relevant task, which opens the way to many applications. In this talk, I will first introduce extreme value statistics and how this theory allows to identify universal features of rare events. I will then present recent results on the extreme values of stochastic processes, including Brownian motion and active particles. I moved to Oxford in October 2022 to take the position of Leverhulme-Peierls Fellow at the Department of Physics and New College. Previously, I was a PhD student at Paris-Saclay University, working with Satya Majumdar. During my PhD, I worked on extreme value statistics of stochastic processes. I am interested in out-of-equilibrium physics, extreme value theory, and large-deviation theory. In particular, I am currently applying ideas from statistical physics to study living systems.

    • 39 min
    Inflation and the Very Early Universe

    Inflation and the Very Early Universe

    Inflation and the Very Early Universe - Georges Obied The universe we observe seems to have come from surprisingly fine-tuned initial conditions. This observation is at the heart of two of the most important puzzles in cosmology, called the horizon and flatness problems. To explain these puzzles, cosmologists invoke a period of accelerated expansion in the early universe (called inflation). As a bonus inflation, when considered with quantum mechanics, produces fluctuations in the energy density that become the galaxies, planets and other structures we see around us. In this talk, I will explain the motivation and physics of the inflationary paradigm. I am Leverhulme-Peierls Fellow at New College. Before coming to Oxford, I completed my PhD at Harvard University under the supervision of Prof. Cumrun Vafa. My research interests lie at the interface of particle physics, string theory and cosmology. At this junction, I work on various aspects of dark energy, dark matter and early universe cosmology from a fundamental physics point of view.

    • 43 min
    Strings and Fields

    Strings and Fields

    Will strings be the theory of everything?, presented by Prof Luis Fernando Alday.

    • 32 min
    Classical and Quantum Black Holes

    Classical and Quantum Black Holes

    Prof March-Russell explains our latest understanding of black holes, some of the most mysterious objects in the Universe.

    • 36 min
    Why is Quantum Gravity so hard?

    Why is Quantum Gravity so hard?

    A pressing question in our quest to understand the Universe is how to unify quantum mechanics and gravity, the very small and the very large.

    • 33 min

Top Podcasts In Education

The Mel Robbins Podcast
Mel Robbins
The Jordan B. Peterson Podcast
Dr. Jordan B. Peterson
Small Doses with Amanda Seales
Urban One Podcast Network
Mick Unplugged
Mick Hunt
TED Talks Daily
TED
The Rich Roll Podcast
Rich Roll

You Might Also Like