Continuum Audio

American Academy of Neurology

Continuum Audio features conversations with the guest editors and authors of Continuum: Lifelong Learning in Neurology, the premier topic-based neurology clinical review and CME journal from the American Academy of Neurology. AAN members can earn CME for listening to interviews for review articles and completing the evaluation on the AAN’s Online Learning Center.

  1. A Pattern Recognition Approach to Myopathy With Dr. Margherita Milone

    5 NGÀY TRƯỚC

    A Pattern Recognition Approach to Myopathy With Dr. Margherita Milone

    While genetic testing has replaced muscle biopsy in the diagnosis of many genetic myopathies, clinical assessment and the integration of clinical and laboratory findings remain key elements for the diagnosis and treatment of muscle diseases. In this episode, Casey Albin, MD, speaks with Margherita Milone, MD, PhD, FAAN, FANA, author of the article “A Pattern Recognition Approach to Myopathy” in the Continuum® October 2025 Muscle and Neuromuscular Junction Disorders issue. Dr. Albin is a Continuum® Audio interviewer, associate editor of media engagement, and an assistant professor of neurology and neurosurgery at Emory University School of Medicine in Atlanta, Georgia. Dr. Milone is a professor of neurology and the director of the Muscle Pathology Laboratory at Mayo Clinic College of Medicine and Science in Rochester, Minnesota. Additional Resources Read the article: A Pattern Recognition Approach to Myopathy Subscribe to Continuum®: shop.lww.com/Continuum Earn CME (available only to AAN members): continpub.com/AudioCME Continuum® Aloud (verbatim audio-book style recordings of articles available only to Continuum® subscribers): continpub.com/Aloud More about the American Academy of Neurology: aan.com Social Media facebook.com/continuumcme @ContinuumAAN Host: @caseyalbin Full episode transcript available here Dr Jones: This is Dr Lyell Jones, Editor-in-Chief of Continuum. Thank you for listening to Continuum Audio. Be sure to visit the links in the episode notes for information about earning CME, subscribing to the journal, and exclusive access to interviews not featured on the podcast. Dr Albin: Hello, this is Dr Casey Albin. Today I'm interviewing Dr Margherita Milone on her article on a pattern recognition approach to myopathy, which appears in the October 2025 Continuum issue on muscle and neuromuscular junction disorders. Welcome to the podcast, Dr Milone. Thank you so much for joining us. I'll start off by having you introduce yourself to our listeners. Dr Milone: Hello Casey, thank you so much for this interview and for bringing the attention to the article on muscle diseases. So, I'm Margherita Milone. I'm one of the neuromuscular neurologists at Mayo Clinic in Rochester. I have been interested in muscle disorders since I was a neurology resident many years ago. Muscle diseases are the focus of my clinical practice and research interest. Dr Albin: Wonderful. Thank you so much. When I think about myopathies, I generally tend to think of three large buckets: the genetic myopathy, the inflammatory myopathies, and then the necrotizing myopathies. Is that a reasonable approach to conceptualizing these myopathies? Dr Milone: Yeah, the ideology of the myopathies can be quite broad. And yes, we have a large group of genetic muscle diseases, which are the most common. And then we have immune-mediated muscle diseases, which include inflammatory myopathies as well as some form of necrotizing myopathies. Then we have some metabolic myopathies, which could be acquired or could be genetic. And then there are muscle diseases that are due to toxins as well as to infection. Dr Albin: Wow. So, lots of different etiologies. And that really struck me about your article, is that these can present in really heterogeneous ways, and some of them don't really read the rule book. So, we have to have a really high level of suspicion, for someone who's coming in with weakness, to remember to think about a myopathy. One of the things that I like to do is try to take us through a little bit of a case to sort of walk us through how you would approach if someone comes in. So, let's say you get, you know, a forty-year-old woman, and she's presenting with several months of progressive weakness. And she says that even recently she's noted just a little bit of difficulty swallowing. It feels to her like things are getting stuck. What are some of the things when you are approaching the history that would help you tease this to a myopathy instead of so many other things that can cause a patient to be weak? Dr Milone: Yes. So, as you mentioned, people who have a muscle disease have the muscle weakness often, but the muscle weakness is not just specific for a muscle disease. Because you can have a mass weakness in somebody who has a neurogenic paralysis. The problem with diagnosis of muscle diseases is that patients with these disorders have a limited number of symptom and sign that does not match the large heterogeneity of the etiology. So, in someone who has weakness, that weakness could represent a muscle disease, could represent an anterior horn cell disease, could represent a defect of neuromuscular junction. The clinical history of weakness is not sufficient by itself to make you think about a muscle disease. You have to keep that in the differential diagnosis. But your examination will help in corroborating your suspicion of a muscle disease. Let's say if you have a patient, the patient that you described, with six months’ history of progressive weakness, dysphagia, and that patient has normal reflexes, and the patient has no clinical evidence for muscle fatigability and no sensory loss, then the probability that that patient has a myopathy increases. Dr Albin: Ah, that's really helpful. I'm hearing a lot of it is actually the lack of other findings. In some ways it's asking, you know, have you experienced numbness and tingling? And if not, that’s sort of eliminating that this might not be a neuropathy problem. And then again, that fatigability- obviously fatigability is not specific to a neuromuscular junction, but knowing that is a hallmark of myasthenia, the most common of neuromuscular disorders. Getting that off the table helps you say, okay, well, it's not a neuromuscular junction problem, perhaps. Now we have to think more about, is this a muscle problem itself? Are there any patterns that the patients describe? I have difficulty getting up from a chair, or I have difficulty brushing my hair. When I think of myopathies, I historically have thought of, sort of, more proximal weakness. Is that always true, or not so much? Dr Milone: Yeah. So, there are muscle diseases that involve predominantly proximal weakness. For example, the patient you mentioned earlier could have, for example, an autoimmune muscle disease, a necrotizing autoimmune myopathy; could have, perhaps, dermatomyositis if there are skin changes. But a patient with muscle disease can also present with a different pattern of weakness. So, myopathies can lead to this weakness, and foot drop myopathies can cause- can manifest with the weakness of the calf muscles. So, you may have a patient presenting to the clinic who has no the inability to stand on tiptoes, or you may have a patient who has just facial weakness, who has noted the difficulty sealing their lips on the glasses when they drink and experiencing some drooling in that setting, plus some hand weakness. So, the muscle involved in muscle diseases can vary depending on the underlying cause of the muscle disease. Dr Albin: That's really helpful. So, it really is really keeping an open mind and looking for some supporting features, whether it's bulbar involvement, extraocular eye muscle involvement; looking, you know, is it proximal, is it distal? And then remembering that any of those patterns can also be a muscle problem, even if sometimes we think of distal being more neuropathy and proximal myopathy. Really, there's a host of ranges for this. I really took that away from your article. This is, unfortunately, not just a neat way to box these. We really have to have that broad differential. Let me ask another question about your history. How often do you find that patients complain of, sort of, muscular cramping or muscle pain? And does that help you in terms of deciding what type of myopathy they may have? Dr Milone: Many patients with muscle disease have muscle pain. The muscle pain could signal a presence of inflammation in skeletal muscle, could be the result of overuse from a muscle that is not functioning normally. People who have myotonia experience muscle stiffness and muscle pain. Patients who have a metabolic myopathy usually have exercise-induced muscle pain. But, as we know, muscle pain is also very nonspecific, so we have to try to find out from the patient in what setting the pain specifically occurs. Dr Albin: That's really helpful. So, it's asking a little bit more details about the type of cramping that they have, the type of pain they may be experiencing, to help you refine that differential. Similarly, one of the things that I historically have always associated with myopathies is an elevation in the CK, or the creatinine kinase. How sensitive and specific is that, and how do you as the expert sort of take into account, you know, what their CK may be? Dr Milone: So, this is a very good point. And the elevation of creatine kinase can provide a clue that the patient has a muscle disease, but it is nonspecific for muscle disease because we know that elevation of creatine kinase can occur in the setting of a neurogenic process. For example, we can see elevation of the creatine kinase in patients who have ALS or in patients who have spinal muscular atrophy. And in these patients---for example, those with spinal muscular atrophy---the CK elevation can be also of significantly elevated up to a couple of thousand. Conversely, we can have muscle diseases where the CK elevation does not occur. Examples of these are some genetic muscle disease, but also some acquired muscle diseases. If we think of, for example, cases where inflammation in the muscle occurs in between muscle fibers, more in the interstitium of the muscle, that disease may not lead to significant elevation of the CK. Dr Albin: That's super helpful. So, I'm hearing you say CK may be helpful, but it's neither completely sensitive nor completely specific when we're thi

    22 phút
  2. Multidisciplinary Treatment for Functional Movement Disorder With Dr. Jon Stone

    1 THG 10

    Multidisciplinary Treatment for Functional Movement Disorder With Dr. Jon Stone

    Functional movement disorders are a common clinical concern for neurologists. The principle of “rule-in” diagnosis, which involves demonstrating the difference between voluntary and automatic movement, can be carried through to explanation, triage, and evidence-based multidisciplinary rehabilitation therapy. In this episode, Gordon Smith, MD, FAAN speaks Jon Stone, PhD, MB, ChB, FRCP, an author of the article “Multidisciplinary Treatment for Functional Movement Disorder” in the Continuum® August 2025 Movement Disorders issue. Dr. Smith is a Continuum® Audio interviewer and a professor and chair of neurology at Kenneth and Dianne Wright Distinguished Chair in Clinical and Translational Research at Virginia Commonwealth University in Richmond, Virginia. Dr. Stone is a consultant neurologist and honorary professor of neurology at the Centre for Clinical Brain Sciences at the University of Edinburgh in Edinburgh, United Kingdom. Additional Resources Read the article: Multidisciplinary Treatment for Functional Movement Disorder Subscribe to Continuum®: shop.lww.com/Continuum Continuum® Aloud (verbatim audio-book style recordings of articles available only to Continuum® subscribers): continpub.com/Aloud More about the American Academy of Neurology: aan.com Social Media facebook.com/continuumcme @ContinuumAAN Host: @gordonsmithMD Guest: @jonstoneneuro Full episode transcript available here Dr Jones: This is Dr Lyell Jones, Editor-in-Chief of Continuum. This exclusive Continuum Audio interview is available only to you, our subscribers. We hope you enjoy it. Thank you for listening. Dr Smith: Hello, this is Dr Gordon Smith. Today I've got the great pleasure of interviewing Dr Johnstone about his article on the multidisciplinary treatment for functional neurologic disorder, which he wrote with Dr Alan Carson. This article will appear in the August 2025 Continuum issue on movement disorders. I will say, Jon, that as a Continuum Audio interviewer, I usually take the interviews that come my way, and I'm happy about it. I learn something every time. They're all a lot of fun. But there have been two instances where I go out and actively seek to interview someone, and you are one of them. So, I'm super excited that they allowed me to talk with you today. For those of our listeners who understand or are familiar with FND, Dr Stone is a true luminary and a leader in this, both in clinical care and research. He's also a true humanist. And I have a bit of a bias here, but he was the first awardee of the Ted Burns Humanism in Neurology award, which is a real honor and reflective of your great work. So welcome to the podcast, Jon. Maybe you can introduce yourself to our audience. Dr Stone: Well, thank you so much, Gordon. It was such a pleasure to get that award, the Ted Burns Award, because Ted was such a great character. I think the spirit of his podcasts is seen in the spirit of these podcasts as well. So, I'm a neurologist in Edinburgh in Scotland. I'm from England originally. I'm very much a general neurologist still. I still work full-time. I do general neurology, acute neurology, and I do two FND clinics a week. I have a research group with Alan Carson, who you mentioned; a very clinical research group, and we've been doing that for about 25 years. Dr Smith: I really want to hear more about your clinical approach and how you run the clinic, but I wonder if it would be helpful for you to maybe provide a definition. What's the definition of a functional movement disorder? I mean, I think all of us see these patients, but it's actually nice to have a definition. Dr Stone: You know, that's one of the hardest things to do in any paper on FND. And I'm involved with the FND society, and we're trying to get together a definition. It's very hard to get an overarching definition. But from a movement disorder point of view, I think you're looking at a disorder where there is an impairment of voluntary movement, where you can demonstrate that there is an automatic movement, which is normal in the same movement. I mean, that's a very clumsy way of saying it. Ultimately, it's a disorder that's defined by the clinical features it has; a bit like saying, what is migraine? You know? Or, what is MS? You know, it's very hard to actually say that in a sentence. I think these are disorders of brain function at a very broad level, and particularly with FND disorders, of a sort of higher control of voluntary movement, I would say. Dr Smith: There's so many pearls in this article and others that you've written. One that I really like is that this isn't a diagnosis of exclusion, that this is an affirmative diagnosis that have clear diagnostic signs. And I wonder if you can talk a little bit about the diagnostic process, arriving at an FND diagnosis for a patient. Dr Stone: I think this is probably the most important sort of “switch-around” in the last fifteen, twenty years since I've been involved. It's not new information. You know, all of these diagnostic signs were well known in the 19th century; and in fact, many of them were described then as well. But they were kind of lost knowledge, so that by the time we got to the late nineties, this area---which was called conversion disorder then---it was written down. This is a diagnosis of exclusion that you make when you've ruled everything out. But in fact, we have lots of rule in signs, which I hope most listeners are familiar with. So, if you've got someone with a functional tremor, you would do a tremor entrainment test where you do rhythmic movements of your thumb and forefinger, ask the patient to copy them. It's very important that they copy you rather than make their own movements. And see if their tremor stops briefly, or perhaps entrains to the same rhythm that you're making, or perhaps they just can't make the movement. That might be one example. There's many examples for limb weakness and dystonia. There's a whole lot of stuff to learn there, basically, clinical skills. Dr Smith: You make a really interesting point early on in your article about the importance of the neurological assessment as part of the treatment of the patient. I wonder if you could talk to our listeners about that. Dr Stone: So, I think, you know, there's a perception that- certainly, there was a perception that that the neurologist is there to make a diagnosis. When I was training, the neurologist was there to tell the patient that they didn't have the kind of neurological problem and to go somewhere else. But in fact, that treatment process, when it goes well, I think begins from the moment you greet the patient in the waiting room, shake their hand, look at them. Things like asking the patient about all their symptoms, being the first doctor who's ever been interested in their, you know, horrendous exhaustion or their dizziness. You know, questions that many patients are aware that doctors often aren't very interested in. These are therapeutic opportunities, you know, as well as just taking the history that enable the patient to feel relaxed. They start thinking, oh, this person's actually interested in me. They're more likely to listen to what you've got to say if they get that feeling off you. So, I'd spend a lot of time going through physical symptoms. I go through time asking the patient what they do, and the patients will often tell you what they don't do. They say, I used to do this, I used to go running. Okay, you need to know that, but what do they actually do? Because that's such valuable information for their treatment plan. You know, they list a whole lot of TV shows that they really enjoy, they're probably not depressed. So that's kind of useful information. I also spend a lot of time talking to them about what they think is wrong. Be careful, that they can annoy patients, you know. Well, I've come to you because you're going to tell me what's wrong. But what sort of ideas had you had about what was wrong? I need to know so that I can deal with those ideas that you've had. Is there a particular reason that you're in my clinic today? Were you sent here? Was it your idea? Are there particular treatments that you think would really help you? These all set the scene for what's going to come later in terms of your explanation. And, more importantly, your triaging of the patient. Is this somebody where it's the right time to be embarking on treatment, which is a question we don't always ask yourself, I think. Dr Smith: That's a really great point and kind of segues to my next question, which is- you talked a little bit about this, right? Generally speaking, we have come up with this is a likely diagnosis earlier, midway through the encounter. And you talked a little bit about how to frame the encounter, knowing what's coming up. And then what's coming up is sharing with the patient our opinion. In your article, you point out this should be no different than telling someone they have Parkinson's disease, for instance. What pearls do you have and what pitfalls do you have in how to give the diagnosis? And, you know, a lot of us really weren't trained to do this. What's the right way, and what are the most common land mines that folks step on when they're trying to share this information with patients? Dr Stone: I've been thinking about this for a long time, and I've come to the conclusion that all we need to do with this disorder is stop being weird. What goes wrong? The main pitfall is that people think, oh God, this is FND, this is something a bit weird. It's in a different box to all of the other things and I have to do something weird. And people end up blurting out things like, well, your scan was normal or, you haven't got epilepsy or, you haven't got Parkinson's disease. That's not what you normally do. It's weird. What you normally do is you take a deep breath and you say, I'm sorry to tell you've got Parkinson's disease or, you hav

    28 phút
  3. Paroxysmal Movement Disorders With Dr. Abhimanyu Mahajan

    24 THG 9

    Paroxysmal Movement Disorders With Dr. Abhimanyu Mahajan

    Paroxysmal movement disorders refer to a group of highly heterogeneous disorders that present with attacks of involuntary movements without loss of consciousness. These disorders demonstrate considerable and ever-expanding genetic and clinical heterogeneity, so an accurate clinical diagnosis has key therapeutic implications. In this episode, Kait Nevel, MD, speaks with Abhimanyu Mahajan, MD, MHS, FAAN, author of the article “Paroxysmal Movement Disorders” in the Continuum® August 2025 Movement Disorders issue. Dr. Nevel is a Continuum® Audio interviewer and a neurologist and neuro-oncologist at Indiana University School of Medicine in Indianapolis, Indiana. Dr. Mahajan is an assistant professor of neurology and rehabilitation medicine at the James J. and Joan A. Gardner Family Center for Parkinson’s Disease and Movement Disorders at the University of Cincinnati in Cincinnati, Ohio. Additional Resources Read the article: Paroxysmal Movement Disorders Subscribe to Continuum®: shop.lww.com/Continuum Earn CME (available only to AAN members): continpub.com/AudioCME Continuum® Aloud (verbatim audio-book style recordings of articles available only to Continuum® subscribers): continpub.com/Aloud More about the American Academy of Neurology: aan.com Social Media facebook.com/continuumcme @ContinuumAAN Host: @IUneurodocmom Guest: @MahajanMD Full episode transcript available here Dr Jones: This is Doctor Lyell Jones, editor in chief of Continuum. Thank you for listening to Continuum Audio. Be sure to visit the links in the episode notes for information about earning CME, subscribing to the journal, and exclusive access to interviews not featured on the podcast. Dr Nevel: Hello, this is Dr Kait Nevel. Today I'm interviewing doctor Abhi Mahajan about his article on diagnosis and management of paroxysmal movement disorders, which appears in the August 2025 Continuum issue on movement disorders. Abhi, welcome to the podcast and please introduce yourself to the audience. Dr Mahajan: Thank you, Kait. Thank you for inviting me. My name is Abhi Mahajan. I'm an assistant professor of neurology and rehabilitation medicine at the University of Cincinnati in Cincinnati, Ohio. I'm happy to be here. Dr Nevel: Wonderful. Well, I'm really excited to talk to you about your article today on this very interesting and unique set of movement disorders. So, before we get into your article a little bit more, I think just kind of the set the stage for the discussion so that we're all on the same page. Could you start us off with some definitions? What are paroxysmal movement disorders? And generally, how do we start to kind of categorize these in our minds? Dr Mahajan: So, the term paroxysmal movement disorders refers to a group of highly heterogeneous disorders. These may present with attacks of involuntary movements, commonly a combination of dystonia and chorea, or ataxia, or both. These movements are typically without loss of consciousness and may follow, may follow, so with or without known triggers. In terms of the classification, these have been classified in a number of ways. Classically, these have been classified based on the trigger. So, if the paroxysmal movement disorder follows activity, these are called kinesigenic, paroxysmal, kinesigenic dyskinesia. If they are not followed by activity, they're called non kinesigenic dyskinesia and then if they've followed prolonged activity or exercise they're called paroxysmal exercise induced dyskinesia. There's a separate but related group of protogynous movement disorders called episodic attacks here that can have their own triggers. Initially this was the classification that was said. Subsequent classifications have placed their focus on the ideology of these attacks that could be familiar or acquired and of course understanding of familiar or genetic causes of paroxysmal movement disorders keeps on expanding and so on and so forth. And more recently, response to pharmacotherapy and specific clinical features have also been introduced into the classification. Dr Nevel: Great, thank you for that. Can you share with us what you think is the most important takeaway from your article for the practicing neurologist? Dr Mahajan: Absolutely. I think it's important to recognize that everything that looks and sounds bizarre should not be dismissed as malingering. Such hyperkinetic and again in quotations, “bizarre movements”. They may appear functional to the untrained eye or the lazy eye. These movements can be diagnosed. Paroxysmal movement disorders can be diagnosed with a good clinical history and exam and may be treated with a lot of success with medications that are readily available and cheap. So, you can actually make a huge amount of difference to your patients’ lives by practicing old-school neurology. Dr Nevel: That's great, thank you so much for that. I can imagine that scenario does come up where somebody is thought to have a functional neurological disorder but really has a proximal movement disorder. You mentioned that in your article, how it's important to distinguish between these two, how there can be similarities at times. Do you mind giving us a little bit more in terms of how do we differentiate between functional neurologic disorder and paroxysmal movement disorder? Dr Mahajan: So clinical differentiation of functional neurological disorder from paroxysmal movement disorders, of course it's really important as a management is completely different, but it can be quite challenging. There's certainly an overlap. So, there can be an overlap with presentation, with phenomenology. Paroxysmal nature is common to both of them. In addition, FND and PMD's may commonly share triggers, whether they are movement, physical exercise. Other triggers include emotional stimuli, even touch or auditory stimuli. What makes it even more challenging is that FND’s may coexist with other neurological disorders, including paroxysmal movement disorders. However, there are certain specific phenom phenotypic differences that have been reported. So specific presentations, for example the paroxysms may look different. Each paroxysm may look different in functional neurological disorders, specific phenotypes like paroxysmal akinesia. So, these are long duration episodes with eyes closed. Certain kinds of paroxysmal hyperkinesia with ataxia and dystonia have been reported. Of course. More commonly we see PNES of paroxysmal nonepileptic spells or seizures that may be considered paroxysmal movement disorders but represent completely different etiology which is FND. Within the world of movement disorders, functional jerks may resemble propiospinal myoclonus which is a completely different entity. Overall, there are certain things that help separate functional movement disorders from paroxysmal movement disorders, such as an acute onset variable and inconsistent phenomenology. They can be suggestibility, distractibility, entrainment, the use of an EMG may show a B-potential (Bereitschaftspotential) preceding the movement in patients with FND. So, all of these cues are really helpful. Dr Nevel: Great, thanks. When you're seeing a patient who's reporting to these paroxysmal uncontrollable movements, what kind of features of their story really tips you off that this might be a proximal movement disorder? Dr Mahajan: Often these patients have been diagnosed with functional neurological disorders and they come to us. But for me, whenever the patient and or the family talk about episodic movements, I think about these. Honestly, we must be aware that there is a possibility that the movements that the patients are reporting that you may not see in clinic. Maybe there are obvious movement disorders. Specifically, there's certain clues that you should always ask for in the history, for example, ask for the age of onset, a description of movements. Patients typically have videos or families have videos. You may not be able to see them in clinic. The regularity of frequency of these movements, how long the attacks are, is there any family history of or not? On the basis of triggers, whether, as I mentioned before, do these follow exercise? Prolonged exercise? Or neither of the above? What is the presentation in between attacks, which I think is a very important clinical clue. Your examination may be limited to videos, but it's important not just to examine the video which represents the patient during an attack, but in between attacks. That is important. And of course, I suspect we'll get to the treatment, but the treatment can follow just this part, the history and physical exam. It may be refined with further testing, including genetic testing. Dr Nevel: Great. On the note of genetic testing, when you do suspect a diagnosis of paroxysmal movement disorder, what are some key points for the provider to be aware of about genetic testing? How do we go about that? I know that there are lots of different options for genetic testing and it gets complicated. What do you suggest? Dr Mahajan: Traditionally, things were a little bit easier, right, because we had a couple of genes that have been associated with the robust movement disorders. So, genetic testing included single gene testing, testing for PRRT2 followed by SLC2A. And if these were negative, you said, well, this is not a genetic ideology for paroxysmal movement disorders. Of course, with time that has changed. There's an increase in known genes and variants. There is increased genetic entropy. So, the same genetic mutation may present with many phenotypes and different genetic mutations may present with the similar phenotype. Single gene testing is not a high yield approach. Overall genetic investigations for paroxysmal movement disorders use next generation sequencing or whole exome sequence panels which allow for sequencing of multiple genes simultaneously. The reported diagnostic yield

    23 phút
  4. Tourette Syndrome and Tic Disorders With Dr. Jessica Frey

    17 THG 9

    Tourette Syndrome and Tic Disorders With Dr. Jessica Frey

    Tics are movements or sounds that are quick, recurrent, and nonrhythmic. They fluctuate over time and can be involuntary or semivoluntary. Although behavioral therapy remains the first-line treatment, modifications to comprehensive behavioral intervention have been developed to make treatment more accessible. In this episode, Casey Albin, MD, speaks with Jessica Frey, MD, author of the article “Tourette Syndrome and Tic Disorders” in the Continuum® August 2025 Movement Disorders issue. Dr. Albin is a Continuum® Audio interviewer, associate editor of media engagement, and an assistant professor of neurology and neurosurgery at Emory University School of Medicine in Atlanta, Georgia. Dr. Frey is an assistant professor of neurology, Movement Disorders Fellowship Program Director, and Neurology Student Clerkship Director at the Rockefeller Neuroscience Institute in the department of neurology at West Virginia University in Morgantown, West Virginia. Additional Resources Read the article: Tourette Syndrome and Tic Disorders Subscribe to Continuum®: shop.lww.com/Continuum Earn CME (available only to AAN members): continpub.com/AudioCME Continuum® Aloud (verbatim audio-book style recordings of articles available only to Continuum® subscribers): continpub.com/Aloud More about the American Academy of Neurology: aan.com Social Media facebook.com/continuumcme @ContinuumAAN Host: @caseyalbin Transcript Full episode transcript available here Dr Jones: This is Dr Lyell Jones, Editor-in-Chief of Continuum. Thank you for listening to Continuum Audio. Be sure to visit the links in the episode notes for information about earning CME, subscribing to the journal, and exclusive access to interviews not featured on the podcast. Dr Albin: Hi all, this is Dr Casey Albin. Today I'm interviewing Dr Jessica Frey about her article Tourette Syndrome and Tic Disorders, which appears in the August 2025 Continuum issue on movement disorders. Dr Frey, thank you so much for being here, and welcome to the podcast. I'd love for you to briefly introduce yourself to our audience. Dr Frey: Thank you for having me here today. My name is Jessica Frey, and I am a movement disorder specialist at West Virginia University. I'm also the movement disorder fellowship director, as well as the neurology clerkship student director. Dr Albin: Dr. Frey, I feel like this was one of the things I actually had no exposure to as a resident. For trainees that kind of want to get a better understanding of how these are managed, what kind of counseling you do, what kind of interventions you're using, how can they get a little bit more exposure? Dr Frey: That's a great question, and I actually had a similar experience to you. I did not see that many patients with Tourette syndrome while I was in my residency training. I got a lot more exposure during my fellowship training, and that's when I actually fell in love with that patient population, caring for them, seeing them be successful. I think it depends on the program that you're in. During the pediatric neurology rotation might be your best bet to getting exposure to patients with Tourette syndrome, since a lot of them are going to be diagnosed when they're quite young, and sometimes they'll even continue to follow through young adulthood in the pediatric neurology clinic. However, up to 20% of patients with Tourette syndrome will have persistent tics during adulthood. And so, I think it is important for neurology trainees to understand how to manage them, understand what resources are out there. So, if you have an interest in that, absolutely try to follow either in the pediatric neurology department, or if you have a movement disorder program that has a Tourette clinic or has a movement disorder specialist who has an interest in Tourette syndrome, definitely try to hang out with them. Get to know that patient population, and educate yourself as much as you're able to educate the patients as well. Dr Albin: Yeah, I think that's fantastic advice. You wrote a fantastic article, and it covers a lot of ground. And I think let's start at some of the basics. When I think of Tourette syndrome and tics, I think of Tourette syndrome having tics, but maybe not all patients who have tics have Tourette syndrome. And so, I was wondering, A, if you could confirm that's true; and then could you tell us a little bit about some of the diagnostic criteria for each of these conditions? Dr Frey: Sure. So, a tic is a phenomenological description. So basically, what you're seeing is a description of a motor or phonic tic, which is a particular type of movement disorder. Tourette syndrome is a very specific diagnosis, and the diagnostic criteria for Tourette syndrome at this point in time is that you need to have had at least one phonic tic and two or more motor tics over the course of at least a year before the age of eighteen. Dr Albin: Got it. So, there's certainly more specific and a lot more criteria for having Tourette syndrome. I was struck in reading your article how many myths there are surrounding Tourette syndrome and tic disorders kind of in general. What's known about the pathophysiology of Tourette syndrome, and what are some common misconceptions about patients who have this disorder? Dr Frey: Yeah, so I think that's a really excellent question because for so many years, Tourette syndrome and tic disorders in general were thought to be psychogenic in origin, even dating back to when they were first described. The history of Tourette syndrome is quite interesting in that, when Tourette---who, you know, it’s named after---was working with Charcot, a lot of the initial descriptors were of actual case reports of patients who had more psychogenic descriptions, and eventually they became known as tic disorders as well. It wasn't until the discovery of Haldol and using Haldol as a treatment for tic disorders that people started to change their perception and say, okay, maybe there is actually a neurologic basis for Tourette syndrome. So, in terms of the pathophysiology, it's not completely known, but what we do know about it, we think that there is some sort of hyperactivity in the corticostriatal-thalamocortical circuits. And we think that because of this hyperactivity, it leads to the hyperactive movement disorder. We think similar circuitry is involved in conditions like OCD, or obsessive compulsive disorder; as well as ADHD, or attention deficit hyperactivity disorder. And because of that, we actually do tend to see an overlap between all three of these conditions in both individuals and families. Dr Albin: And hearing all of that, does this all come back to, sort of, dopamine and, sort of, behavioral motivation, or is it different than that? Dr Frey: It's probably more complex than just dopamine, but there is the thought that dopamine does play a role. And even one of the hypotheses regarding the pathophysiology is actually that these tics might start as habits, and then when the habits become more common, they actually reshape the dopaminergic pathways. And each time a tic occurs, there's a little bit of a dopaminergic reward. And so over time, that reshapes those hyperactive pathways and changes the actual circuitry of the brain, leading it to be not just a habit but part of their neurologic makeup. Dr Albin: It's fascinating to hear how that actually might play into our neural circuitry and, over time, rewire our brain. Fascinating. I mean, this is just so interesting how movement disorders play into such behavioral regulation and some comorbid conditions like ADHD and OCD. I thought it would be really helpful, maybe, to our listeners to kind of think through a case that I suspect is becoming more common. So, if it's okay with you, I'll present sort of a hypothetical. Dr Frey: Absolutely. Dr Albin: This is a father bringing in his seventeen-year-old daughter. She's coming into the clinic because she's been demonstrating, over the past four to six weeks, some jerking movement in her right arm. And it's happened multiple times a day. And it was a pretty sudden onset. She had not had any movement like this before, and then several weeks ago, started moving the right hand. And then it became even more disruptive: her right leg was involved, she had some scrunching her face. This is all happening at a time where she was dealing with some stress, maybe a little bit of applications around college that she was having a lot of anxiety about. How do you sort of approach this case if this is someone who comes to your office? Dr Frey: Sure. So, I think the first thing that you want to get is a good solid history, trying to understand, what is the origin of these abnormal movements and what led to the abnormal movements. Now, a key thing here is that in Tourette syndrome, and most physiologic tic syndromes, there's a pretty early onset. So, in Tourette syndrome, the expected age of onset is between the ages of five and seven years old. So, to have kind of acute new abnormal movements as a seventeen-year-old would be very unusual for a new-onset diagnosis of Tourette syndrome. However, there's a couple of things from the history that could help you. One would be, were there ever tics in the past? Because sometimes, when you think retrospectively, a lot of these patients might have had a simple eye-blinking tic or a coughing tic when they were a child. And perhaps they did have Tourette syndrome, a very mild case of it. But because the tics were never that pronounced, they never went to see anyone about it and it was never known that they had Tourette syndrome in the first place. If there is no history like that and the movements are completely new, out of the blue, of course you want to rule out anything acute that could be going on that could be causing that. Looking at the phenomenology of the movements can also be very helpful. When you're looking at abnormal tic

    24 phút
  5. Ataxia With Dr. Theresa Zesiewicz

    10 THG 9

    Ataxia With Dr. Theresa Zesiewicz

    Ataxia is a neurologic symptom that refers to incoordination of voluntary movement, typically causing gait dysfunction and imbalance. Genetic testing and counseling can be used to identify the type of ataxia and to assess the risk for unaffected family members. In this episode, Katie Grouse, MD, FAAN, speaks with Theresa A. Zesiewicz, MD, FAAN, author of the article “Ataxia” in the Continuum® August 2025 Movement Disorders issue. Dr. Grouse is a Continuum® Audio interviewer and a clinical assistant professor at the University of California San Francisco in San Francisco, California. Dr. Zesiewicz is a professor of neurology and director at the University of South Florida Ataxia Research Center, and the medical director at the University of South Florida Movement Disorders Neuromodulation Center at the University of South Florida and at the James A. Haley Veteran’s Hospital in Tampa, Florida. Additional Resources Read the article: Ataxia Subscribe to Continuum®: shop.lww.com/Continuum Earn CME (available only to AAN members): continpub.com/AudioCME Continuum® Aloud (verbatim audio-book style recordings of articles available only to Continuum® subscribers): continpub.com/Aloud More about the American Academy of Neurology: aan.com Social Media facebook.com/continuumcme @ContinuumAAN Full episode transcript available here Dr Jones: This is Dr Lyell Jones, Editor-in-Chief of Continuum. Thank you for listening to Continuum Audio. Be sure to visit the links in the episode notes for information about earning CME, subscribing to the journal, and exclusive access to interviews not featured on the podcast. Dr Grouse: This is Dr Katie Grouse. Today I'm interviewing Dr Theresa Zesiewicz about her article on ataxia, which appears in the August 2025 Continuum issue on movement disorders. Welcome to the podcast, and please introduce yourself to our audience.  Dr Zesiewicz: Well, thank you, Dr Grouse. I'm Dr Theresa Zesiewicz, otherwise known as Dr Z, and I'm happy to be here. Dr Grouse: I have to say, I really enjoyed reading your article. It was a really great refresher for myself as a general neurologist on the topic of ataxia and a really great reminder on a great framework to approach diagnosis and management. But I wanted to start off by asking what you feel is the key message that you hope our listeners will take away from reading your article. Dr Zesiewicz: Yes, so, thanks. I think one of the key messages is that there has been an explosion and renaissance of genetic testing in the past 10 years that has really revolutionized the field of ataxia and has made diagnosis easier for us, more manageable, and hopefully will lead to treatments in the future. So, I think that's a major step forward for our field in terms of genetic techniques over the last 10 years, and even over the last 30 years. There's just been so many diseases that have been identified genetically. So, I think that's a really important take-home message. The other take-home message is that the first drug to treat Friedreich's ataxia, called omaveloxolone, came about about two years ago. This was also a really landmark discovery. As you know, a lot of these ataxias are very difficult to treat. Dr Grouse: Now pivoting back to thinking about the approach to diagnosis of ataxia, how does the timeline of the onset of ataxia symptoms inform your approach? Dr Zesiewicz: The timeline is important because ataxia can be acute, subacute or chronic in nature. And the timeline is important because, if it's acute, it may mean that the ataxia took place over seconds to hours. This may mean a toxic problem or a hypoxic problem. Whereas a chronic ataxia can occur over many years, and that can inform more of a neurodegenerative or more of a genetic etiology. So, taking a very detailed history on the patient is very important. Sometimes I ask them, what is the last time you remember that you walked normal? And that can be a wedding, that can be a graduation. Just some timeline, some point, that the patient actually walked correctly before they remember having to hold onto a railing or taking extra steps to make sure that they didn't fall down, that they didn't have imbalance. That sometimes that's a good way to ask the patient when is the last time they had a problem. And they can help you to try to figure out how long these symptoms have been going on. Dr Grouse: I really appreciate that advice. I will say that I agree, it can sometimes be really hard to get patients to really think back to when they really started to notice something was different. So, I like the idea of referencing back to a big event that may be more memorable to them. Now, given that framework of, you know, thinking through the timeline, could you walk us through your approach to the evaluation of a patient who presents to your clinic with that balance difficulties once you've established that? Dr Zesiewicz: Sure. So, the first thing is to determine whether the patient truly has ataxia. So, do they have imbalance? Do they have a wide base gait? That's very important because patients come in frequently to your clinic and they'll have balance problems, but they can have knee issues or hip issues, neuropathy, something like that. And sometimes what we say to the residents and the students is, usually ataxia or cerebellar symptoms go together with other problems, like ocular problems are really common in cerebellar syndromes. Or dysmetria, pass pointing, speech disorder like dysarthria. So, not only do you need to look at the gait, but you should look at the other symptoms surrounding the gait to see if you think that the patient actually has a cerebellar syndrome. Or do they have something like a vestibular ataxia which would have more vertigo? Or do they have a sensory ataxia, which would occur if a person closes his eyes or has more ataxia when he or she is in the dark? So, you have to think about what you're looking at is the cerebellar syndrome. And then once we look to see if the patient truly has a cerebellar syndrome, then we look at the age, we look at---as you said before, the timeline. Is this acute, subacute, or chronic? And usually I think of ataxia as falling into three categories. It's either acquired, it's either hereditary, or it's neurodegenerative. It can be hereditary. And if it's not hereditary, is it acquired, or is it something like a multiple system atrophy or a parkinsonism or something like that? So, we try to put that together and start to narrow down on the diagnosis, thinking about those parameters. Dr Grouse: That's really a helpful way to think through it. And it is true, it can get very complex when patients come in with balance difficulties. There's so many things you need to think about, but that is a great way to think about it. Of course, we know that most people who come in to the Movements Disorders clinic are getting MRI scans of their brains. But I'm curious, in which cases of patients with cerebellar ataxia do you find the MRI to be particularly helpful in the diagnosis? Dr Zesiewicz: So, an MRI can be very important. Not always, but- so, something like multiple system atrophy type C where you may see a hot cross bun sign or a pontine hyperintensity on the T2-weighted image, that would be helpful. But of course, that doesn't make the diagnosis. It's something that may help you with the diagnosis. In FXTAS, which is fragile X tremor/ataxia syndrome, the patient may have the middle cerebellar peduncle sign or the symmetric hyperintensity in the middle cerebellar peduncles, which is often visible but not always. Something like Wernicke’s, where you see an abnormality of the mammillary bodies. Wilson's disease, which is quite rare, T2-weighted image may show hyperintensities in the putamen in something like Wilson's disease. Those are the main MRI abnormalities, I think, with ataxia. And then we look at the cerebellum itself. I mean, that seems self-evident, but if you look at a sagittal section of the MRI and you see just a really significant atrophy of the cerebellum, that's going to help you determine whether you really have a cerebellar syndrome. Dr Grouse: That's really encouraging to hear a good message for all of us who sometimes feel like maybe we're missing something. It's good to know that information can always come up down the line to make things more clear. Your article does a great review of spinal cerebellar ataxia, but I found it interesting learning about the more recently described syndrome of SCA 27B. Would you mind telling us more about that and other really common forms of SCA that's good to keep in mind? Dr Zesiewicz: Sure. So, there are now 49 types of spinal cerebellar ataxia that have been identified. The most common are the polyglutamine repeat diseases: so, spinocerebellar ataxia type 3 or type 2, type 6, are probably the most common. One of the most recent spinocerebellar ataxias to be genetically identified and clinically identified is spinocerebellar ataxia 27B. This is caused by a GAA expansion repeat in the first intron of the fibroblast growth factor on chromosome 13. And the symptoms do include ataxia, eye problems, downbeat nystagmus, other nystagmus, vertical, and diplopia. It appears to be a more common form of adult-onset ataxia, and probably more common than was originally thought. It may account for a substantial number of ataxias, like, a substantial percentage of ataxias that we didn't know about. So, this was really a amazing discovery on SCA 27B. Dr Grouse: Now a lot of us I think feel a little anxious when we think about genetic testing for ataxia simply because there's so many forms, things are changing quickly. Do you have a rule of thumb or a kind of a framework that we can think of as we approach how we should be thinking about getting genetic testing for the subset of patients? Dr Zesiewicz: Sure. And I think that this is where age comes into play a

    21 phút
  6. Huntington Disease and Chorea with Dr. Kathryn Moore

    3 THG 9

    Huntington Disease and Chorea with Dr. Kathryn Moore

    Chorea describes involuntary movements that are random, abrupt, and unpredictable, flowing from one body part to another. The most common cause of genetic chorea in adults is Huntington disease, which requires comprehensive, multidisciplinary care as well as support for care partners, who may themselves be diagnosed with the disease. In this episode, Aaron Berkowitz, MD, PhD FAAN speaks with Kathryn P. L. Moore, MD, MSc, author of the article “Huntington Disease and Chorea” in the Continuum® August 2025 Movement Disorders issue. Dr. Berkowitz is a Continuum® Audio interviewer and a professor of neurology at the University of California San Francisco in the Department of Neurology in San Francisco, California. Dr. Moore is an assistant professor and director of the Parkinson’s Disease and Movement Disorders Fellowship in the department of neurology at Duke University in Durham, North Carolina. Additional Resources Read the article: Huntington Disease and Chorea Subscribe to Continuum®: shop.lww.com/Continuum Earn CME (available only to AAN members): continpub.com/AudioCME Continuum® Aloud (verbatim audio-book style recordings of articles available only to Continuum® subscribers): continpub.com/Aloud More about the American Academy of Neurology: aan.com Social Media facebook.com/continuumcme @ContinuumAAN Host: @AaronLBerkowitz Guest: @KatiePMooreMD Full episode transcript available here Dr Jones: This is Dr Lyell Jones, Editor-in-Chief of Continuum. Thank you for listening to Continuum Audio. Be sure to visit the links in the episode notes for information about earning CME, subscribing to the journal, and exclusive access to interviews not featured on the podcast. Dr Berkowitz: This is Dr Aaron Berkowitz with Continuum Audio, and today I'm interviewing Dr Kathryn Moore about her article on diagnosis and management of Huntington disease and chorea, which appears in the August 2025 Continuum issue on movement disorders. Welcome to the podcast, Dr Moore. Could you please introduce yourself to our audience? Dr Moore: Yeah, thank you so much. I'm so excited to be here. I'm Dr Moore. I'm an assistant professor of neurology at Duke University, where I work as a movement disorder specialist. I run our fellowship there and help with our residency program as well. So, I'm excited to speak with our listeners about chorea today. Dr Berkowitz: Fantastic. And we're excited to talk to you about chorea. So, as a general neurologist myself, I only see chorea pretty rarely compared to other movement disorders like tremor, myoclonus, maybe the occasional tic disorder. And like anything I don't see very often, I always have to look up the differential diagnosis and how to evaluate a patient with chorea. So, I was so glad to read your article. And next time I see a patient with chorea, I know I'll be referring to your article as a great reference to have a framework for how to approach it. I hope our readers will look at all these helpful tables on differential diagnosis based on distribution of chorea in the body, potential etiologies, time course of onset and evolution, associated drug-induced causes, what tests to send. So, I highly recommend our listeners read the article. Keep those tables handy for when a patient comes in with chorea. I'm excited to pick your brain about some of these topics today. First, how do you go about distinguishing chorea from other hyperkinetic movement disorders when you see a patient that you think might have chorea? Dr Moore: One of the wonderful things about being a movement disorder specialist is we spend a lot of time looking at movements and training our brain to make these distinctions. The things that I would be looking out for chorea is involuntary, uncontrolled movements that appear to be brief and flowing from one part of the body to another. So, if you can watch a patient and predict what movements they're going to do, this probably isn't chorea. And it should be flowing from one part of the body to another. So, not staying just in one part of the body or having sustained movements. It can be difficult to distinguish between a tic or dystonia or myoclonus. Those things tend to be more predictable and repetitive than the chorea, which tends to be really random and can look like dancing. Dr Berkowitz: That's very helpful. So, once you've decided the patient has chorea, what's your framework for thinking about the differential diagnosis of the cause of the patient's chorea? Dr Moore: Well, that could be really challenging. The differential for chorea is very broad, and so the two things that I tend to use are age of the patient and acuity of onset. And so, if you're thinking about acute onset of chorea, you're really looking at a structural lesion like a stroke or a systemic issue like infection, hyperglycemia, etc. Where a gradually progressive chorea tends to be genetic in nature. When you're thinking about the difference between a child and an adult, the most common cause of chorea in a child is Sydenham's chorea. And actually, the most common cause of chorea that I tend to see is Parkinson's disease medication. So, if anybody's seen dyskinesia in Parkinson's disease, you've seen chorea. But it's those two things that I'm using, the age of the patient and the acuity. Somewhere in the middle, though---so, if you have subacute onset of chorea---it's important to remember to think about autoimmune conditions or paraneoplastic conditions because these are treatable. Dr Berkowitz: That's very helpful. So, like in any chief concern in neurology, we're using the context like the age and then the time course. And then a number of other helpful points in your article about the distribution of chorea in the body. Any comments you'd like to make about- we have this very helpful table that I thought was very interesting. So, you really get deep into the nuances of chorea and the movement disorder specialist expert level. Are there any aspects of parts of the body affected by chorea or distribution of chorea across the body that help you hone your differential diagnosis? Dr Moore: Certainly. I think where the chorea is located in the body can be helpful, but not as helpful as other conditions where you're localizing a lesion or that sort of thing. Because you can have a systemic cause of chorea that causes a hemichorea; that you can have hyperglycemia causing a hemichorea, or even Sydenham's chorea being a hemichorea. But things that we think about, if the forehead is involved, I would think about Huntington’s disease, although this is not pathognomonic. And if it's involving the face or the mouth, you can think about neuroacanthocytosis or, more commonly, tardive dyskinesia. Hemichorea would make me think about some of those systemic issues like hyperglycemia, Sydenham's chorea, those sorts of things, but I would rely more on the historical context and the acuity of presentation than the distribution itself. Dr Berkowitz: Got it. That's very helpful. So those can be helpful features, but not sort of specific for any particular condition. Dr Moore: Exactly. Dr Berkowitz: Yeah, I often see forehead chorea mentioned as sort of specific to Huntington's disease. Since I don't see much Huntington's disease myself, what does forehead chorea look like? What is the forehead doing? How do you recognize that there is chorea of the forehead? It's just sort of hard for me to imagine what it would look like. Dr Moore: It's really tricky. I think seeing the eyebrows go up and down or the brows furrow in an unpredictable way is really what we're looking for. And that can be hard if you're having a conversation. My forehead is certainly animated as we're talking about one of my favorite topics here. One of the tricks that I use with the fellows is to observe the forehead from the side, and there you can see the undulation of the forehead muscles. And that can be helpful as you're looking for these things. I think where it's most helpful to use the forehead is if you're trying to determine if someone with a psychiatric history has tardive dyskinesia or Huntington's disease, because there can be quite a lot of overlap there. And unfortunately, patients can have both conditions. And so, using the forehead movement can be helpful to maybe direct further testing for Huntington's disease. Dr Berkowitz: Oh, wow, that's a very helpful pearl. So, if you see, sort of, diffuse chorea throughout the body and the forehead is involved, to my understanding it may be less specific. But in the context of wondering, is the neuropsychiatric condition and movement disorder related by an underlying cause in the case of seeing orofacial dyskinesias, is the relationship a drug having caused a tardive dyskinesia or is the whole underlying process Huntington's, the absence of forehead might push you a little more towards tardive dyskinesia, presuming there is an appropriate implicated drug and the presence of forehead chorea would really clue you in more to Huntington's. Did I understand that pearl? Dr Moore: That's exactly right, and I'm glad you brought up the point about making sure, if you're considering tardive dyskinesia, that there has been an appropriate drug exposure. Because without that you can't make that diagnosis. Dr Berkowitz: That's a very helpful and interesting pearl, looking at the forehead from the side. That is a movement disorders pearl for sure. Sort of not just looking at the forehead from one angle and trying to figure out what it's doing, but going to look at the patient in profile and trying to sort it out. I love that. Okay. So, based on the differential diagnosis you would have crafted based on whether this is sort of acute, subacute, chronic, the age of the patient, whether it's unilateral, bilateral, which parts of the body. How do you go about the initial evaluation in terms of laboratory testing, imaging, etc.? Dr Moore: Well, certai

    23 phút
  7. Progressive Supranuclear Palsy and Corticobasal Syndrome With Dr. Nikolaus McFarland

    27 THG 8

    Progressive Supranuclear Palsy and Corticobasal Syndrome With Dr. Nikolaus McFarland

    Progressive supranuclear palsy and corticobasal syndrome are closely related neurodegenerative disorders that present with progressive parkinsonism and multiple other features that overlap clinically and neuropathologically. Early recognition is critical to provide appropriate treatment and supportive care. In this episode, Teshamae Monteith, MD, FAAN speaks with Nikolaus R. McFarland, MD, PhD, FAAN, author of the article “Progressive Supranuclear Palsy and Corticobasal Syndrome” in the Continuum® August 2025 Movement Disorders issue. Dr. Monteith is the associate editor of Continuum® Audio and an associate professor of clinical neurology at the University of Miami Miller School of Medicine in Miami, Florida. Dr. McFarland is an associate professor of neurology at the University of Florida College of Medicine at the Norman Fixel Institute for Neurological Diseases in Gainesville, Florida. Additional Resources  Read the article: Progressive Supranuclear Palsy and Corticobasal Syndrome Subscribe to Continuum®: shop.lww.com/Continuum Earn CME (available only to AAN members): continpub.com/AudioCME Continuum® Aloud (verbatim audio-book style recordings of articles available only to Continuum® subscribers): continpub.com/Aloud More about the American Academy of Neurology: aan.com Social Media facebook.com/continuumcme @ContinuumAAN Host: @headacheMD Full episode transcript available here Dr Jones: This is Dr Lyell Jones, Editor-in-Chief of Continuum. Thank you for listening to Continuum Audio. Be sure to visit the links in the episode notes for information about earning CME, subscribing to the journal, and exclusive access to interviews not featured on the podcast. Dr Monteith: Hi, this is Dr Teshamae Monteith. Today I'm interviewing Dr Nikolaus McFarland about his article on progressive supranuclear palsy and cortical basilar syndrome, which appears in the August 2025 Continuum issue on movement disorders. Welcome, how are you? Dr Farland: I'm great. Thank you for inviting me to do this. This is a great opportunity. I had fun putting this article together, and it’s part of my passion. Dr Monteith: Yes, I know that. You sit on the board with me in the Florida Society of Neurology and I've seen your lectures. You're very passionate about this. And so why don't you first start off with introducing yourself, and then tell us just a little bit about what got you interested in this field. Dr Farland: I'm Dr Nicholas McFarlane. I'm an associate professor at the University of Florida, and I work at the Norman Fixel Institute for Neurological Diseases. I am a director of a number of different centers. So, I actually direct the cure PSP Center of Care and the MSA Center of Excellence at the University of Florida; I also direct the Huntington's clinic there as well. But for many years my focus has been on atypical parkinsonisms. And, you know, I've treated these patients for years, and one of my focuses is actually these patients who suffer from progressive supranuclear palsy and corticobasal syndrome. So that's kind of what this review is all about. Dr Monteith: You probably were born excited, but I want to know what got you interested in this in particular? Dr Farland: So, what got me interested in this in particular was really the disease and the challenges that's involved in it. So, Parkinson's disease is pretty common, and we see a lot of that in our clinic. Yet many times, roughly about 10 to 15% of my patients present with these atypical disorders. And they're quite fascinating. They present in different ways. They're fairly uncommon. They're complex disorders that progress fairly rapidly, and they have multiple different features. They're sort of exciting to see clinically as a neurologist. I think they're really interesting from an academic standpoint, but also in the standpoint of really trying to bring together sort of a team. We have built a multidisciplinary team here at the University of Florida to take care of these patients. They require a number of folks on that team to take care of them. And so, what's exciting, really, is the challenge of treating these patients. There are very limited numbers of therapies that are available, and the current therapies that we have often really aren't great and over time they fail. And so, part of the challenge is actually doing research. And so, there's actually a lot of new research that's been going on in this field. Recently, there's been some revisions to the clinical criteria to help diagnose these disorders. So, that's really what's exciting. The field is really moving forward fairly rapidly with a number of new diagnostics, therapeutics coming out. And hopefully we can make a real difference for these patients. And so that's what really got me into this field, the challenge of trying to treat these patients, help them, advocate for them and make them better. Dr Monteith: And so, tell me what the essential points of this article. Dr Farland: So, the essential points, really, of this article is: number one, you know, just to recognize the new clinical criteria for both PSP and corticobasal syndrome, the diagnosis for these disorders or the phenotypic spectrum has really expanded over the years. So, we now recognize many different phenotypes of these disorders, and the diagnosis has gotten fairly complicated. And so, one of the goals of this article was to review those new diagnostic criteria and the different phenotypic ways these diseases present. I wanted to discuss, also, some of the neuropathology and clinicopathological overlap that's occurred in these diseases as well as some of the new diagnostic tests that are available. That's definitely growing. Some of the new studies that are out, in terms of research and clinical trials. And then wanted to review some of the approaches for treatment for neurologists. Particularly, we're hoping that, you know, this article educates folks. If you're a general neurologist, we're hoping that recognizing these diseases early on will prompt you to refer these patients to specialty clinics or movement disorder specialists early on so they can get appropriate care, confirm your diagnosis, as well as get them involved in trials if they are available. Dr Monteith: And how has the clinical criteria for PSP and cortical basilar syndrome changed? Dr Farland: I think I already mentioned there's been an evolution of the clinical criteria for PSP. There's new diagnostic criteria that were recently published, and it recognizes the multiple clinical phenotypes and the spectrum of the disease that's out there, which is much broader than we thought about. Corticobasal clinical criteria are the Dr Armstrong criteria from 2013. They have not been updated, but they are in the works of being updated. But it does recognize the classic presentation of corticobasal syndrome, plus a frontal executive predominant and then a variant that actually overlaps with PSP. So, there's a lot more overlap in these two diseases than we originally recognized. Dr Monteith: And so, you spoke a bit about FTD spectrum. So why don't you tell us a little bit about what that is? I know you mentioned multiple phenotypes. Dr Farland: What I really want to say is that both PSP and corticobasal syndrome, they're relatively rare, and what- sort of as to common features, they both are progressive Parkinson disorders, but they have variable features. While they're commonly associated with Parkinson's, they also fit within this frontotemporal lobar spectrum, having features that overlap both clinically and neuropathologically. I just want folks to understand that overlap. One of this pathological overlap here is the predominant Tau pathology in the brain, an increasing recognology- recognition of sort of the pathological heterogeneity within these disorders. So, there's an initial description, a classic of PSP, as Richardson syndrome. But now we recognize there are lots of different features to it and there are different ways it presents, and there's definitely a lot of clinical pathological overlap. Dr Monteith: Why don't we just talk about some red flags for PSP? Dr Farland: Yeah, sure. So, some of the red flags for PSP and even corticobasal syndrome are: number one is rapid progression with early onset of falls, gait difficulty, falling typically backwards, early speech and swallow problems that are more prominent than you see in Parkinson's disease, as well as eye gaze issues. So, ocular motor features, particularly vertical gaze palsy. In particular what we talk about is the supranuclear gaze palsy, and one of the most sensitive features that we've seen with these is downgaze limitation or slowed downgaze, and eventually a full vertical gaze palsy and followed supranuclear gaze palsy. So, there's some of the red flags that we see. So, while we think about the lack of response to levodopa frequently as something that's a red flag for Parkinson's, there are many times that we see Parkinson's patients, and about a quarter of them don't really respond. There's some features that don't respond to levodopa that may not be so specific, but also can be helpful in this disease. Dr Monteith: And what about the red flags for cortical basilar syndrome? Dr Farland: So, for cortical basilar syndrome, some of the red flags again are this rapidly depressive syndrome tends to be, at least in its classical present presentation, more asymmetric in its presentation of parkinsonism, with features including things like dystonic features, okay? For limb dystonia and apraxias---so, inability to do a learned behavior. One of those red flags is a patient who comes in and says, my hand doesn't work anymore, which is something extremely uncommon that you hear in Parkinson's disease. Most of those patients will present, say, I might have a tremor, but they very rarely will tell you that I can't use my hand. So look out for that

    24 phút
  8. Multiple System Atrophy With Dr. Tao Xie

    20 THG 8

    Multiple System Atrophy With Dr. Tao Xie

    Multiple system atrophy is a rare, sporadic, adult-onset, progressive, and fatal neurodegenerative disease. Accurate and early diagnosis remains challenging because it presents with a variable combination of symptoms across the autonomic, extrapyramidal, cerebellar, and pyramidal systems. Advances in brain imaging, molecular biomarker research, and efforts to develop disease-modifying agents have shown promise to improve diagnosis and treatment. In this episode, Casey Albin, MD speaks with Tao Xie, MD, PhD, author of the article “Multiple System Atrophy” in the Continuum® August 2025 Movement Disorders issue. Dr. Albin is a Continuum® Audio interviewer, associate editor of media engagement, and an assistant professor of neurology and neurosurgery at Emory University School of Medicine in Atlanta, Georgia. Dr. Xie is director of the Movement Disorder Program, chief of the Neurodegenerative Disease Section in the department of neurology at the University of Chicago Medicine in Chicago, Illinois. Additional Resources Read the article: Multiple System Atrophy Subscribe to Continuum®: shop.lww.com/Continuum Earn CME (available only to AAN members): continpub.com/AudioCME Continuum® Aloud (verbatim audio-book style recordings of articles available only to Continuum® subscribers): continpub.com/Aloud More about the American Academy of Neurology: aan.com Social Media facebook.com/continuumcme @ContinuumAAN Host: @caseyalbin Full episode transcript available here Dr. Jones: This is Dr Lyell Jones, Editor-in-Chief of Continuum. Thank you for listening to Continuum Audio. Be sure to visit the links in the episode notes for information about earning CME, subscribing to the journal, and exclusive access to interviews not featured on the podcast. Dr Albin: Hello everyone, this is Dr Casey Albin. Today I'm interviewing Dr Tao Xie about his article on diagnosis and management of multiple system atrophy, which appears in the August 2025 Continuum issue on movement disorders. Welcome to the podcast, and please introduce yourself to our audience. Dr Xie: Thank you so much, Dr Albin. My name is Tao Xie, and sometimes people also call me Tao Z. I'm a mood disorder neurologist, professor of neurology at the University of Chicago. I'm also in charge of the mood disorder program here, and I'm the section chief in the neurodegenerative disease in the Department of Neurology at the University of Chicago Medicine. Thank you for having me, Dr Albin and Dr Okun and the American Academy of Neurology. This is a great honor and pleasure to be involved in this education session. Dr Albin: We are delighted to have you, and thank you so much for the thoughtful approach to the diagnosis and management. I really want to encourage our listeners to check out this article. You know, one of the things that you emphasize is multiple system atrophy is a fairly rare condition. And I suspect that clinicians and trainees who even have a fair amount of exposure to movement disorders may not have encountered that many cases. And so, I was hoping that you could just start us off and walk us through what defines multiple system atrophy, and then maybe a little bit about how it's different from some of the more commonly encountered movement disorders. Dr Xie: This is a really good question, Dr Albin. Indeed, MSA---multisystem atrophy----is a rare disease. It is sporadic, adult-onset, progressive, fatal neurodegenerative disease. By the name MSA, multisystem atrophy. Clinically, it will present with multiple symptoms and signs involving multiple systems, including symptoms of autonomic dysfunction and symptoms of parkinsonism, which is polyresponsive to the levodopa treatment; and the symptom of cerebellar ataxia, and symptom of spasticity and other motor and nonmotor symptoms. And you may be wondering, what is the cause- underlying cause of these symptoms? Anatomically, we can find the area in the basal ganglia striatonigral system, particularly in the putamen and also in the cerebellar pontine inferior, all of the nuclear area and the specific area involved in the autonomic system in the brain stem and spinal cord: all become smaller. We call it atrophy. Because of the atrophy in this area, they are responsible for the symptom of parkinsonism if it is involved in the putamen and the cerebral ataxia, if it's involved in the pons and cerebral peduncle and the cerebellum. And all other area, if it's involved in the autonomic system can cause autonomic symptoms as well. So that's why we call it multisystem atrophy. And then what's the underlying cellular and subcellular pathological, a hallmark that is in fact caused by misfolded alpha-synuclein aggregate in the oligodontia site known as GCI---glial cytoplasmic increasing bodies---in the cells, and sometimes it can also be found in the neuronal cell as well in those areas, as mentioned, which causes the symptom. But clinically, the patient may not present all the symptoms at the same time. So, based on the predominant clinical symptom, if it's mainly levodopa, polyresponsive parkinsonism, then we call it MSAP. If it's mainly cerebellar ataxia, then we call it MSAC. But whether we call it MSP or MSC, they all got to have autonomic dysfunction. And also as the disease progresses, they can also present both phenotypes together. We call that mixed cerebellar ataxia and parkinsonism in the advanced stage of the disease. So, it is really a complicated disease. The complexity and the similarity to other mood disorders, including parkinsonism and the cerebellar ataxia, make it really difficult sometimes, particularly at the early stages of disease, to differentiate one from the other. So, that was challenging not only for other professionals, general neurologists and even for some movement disorder specialists, that could be difficult particularly if you aim to make an accurate and early diagnosis. Dr Albin: Absolutely. That is such a wealth of knowledge here. And I'm going to distill it just a little bit just to make sure that I understand this right. There is alpha-synuclein depositions, and it's really more widespread than one would see maybe in just Parkinson's disease. And with this, you are having patients present with maybe one of two subtypes of their clinical manifestations, either with a Parkinson's-predominant movement disorder pattern or a cerebellar ataxia type movement disorder pattern. Or maybe even mixed, which really, you know, we have to make things quite complicated, but they are all unified and having this shared importance of autonomic features to the diagnosis. Have I got that all sort of correct? Dr Xie: Correct. You really summarize well. Dr Albin: Fantastic. I mean, this is quite a complicated disease. I would pose to you sort of a case, and I imagine this is quite common to what you see in your clinic. And let's say, you know, a seventy-year-old woman comes to your clinic because she has had rigidity and poor balance. And she's had several falls already, almost always from ground level. And her family tells you she's quite woozy whenever she gets up from the chair and she tends to kind of fall over. But they noticed that she's been stiff,and they've actually brought her to their primary care doctor and he thought that she had Parkinson's disease. So, she started levodopa, but they're coming to you because they think that she probably needs a higher dose. It's just not working out very well for her. So how would you sort of take that history and sort of comb through some of the features that might make you more concerned that the patient actually has undiagnosed multiple systems atrophy? Dr Xie: This is a great case, because we oftentimes can encounter similar cases like this in the clinic. First of all, based on the history you described, it sounds like an atypical parkinsonism based on the slowness, rigidity, stiffness; and particularly the early onset of falls, which is very unusual for typical Parkinson disease. It occurs too early. If its loss of balance, postural instability, and fall occurred within three years of disease onset---usually the motor symptom onset---then it raises a red flag to suspect this must be some atypical Parkinson disorders, including multiple system atrophy. Particularly, pou also mentioned that the patient is poorly responsive to their levodopa therapy, which is very unusual because for Parkinson disease, idiopathic Parkinson disease, we typically expect patients would have a great response to the levodopa, particularly in the first 5 to 7 years. So to put it all together, this could be atypical parkinsonism, and I could not rule out the possibility of MSA. Then I need to check more about other symptoms including autonomic dysfunction, such as orthostatic hypertension, which is a blood pressure drop when the patient stands up from a lying-down position, or other autonomic dysfunctions such as urinary incontinence or severe urinary retention. So, in the meantime, I also have to put the other atypical Parkinson disorder on the differential diagnosis, such as PSP---progressive supranuclear palsy---and the DLBD---dementia with Lewy body disease.---Bear this in mind. So, I want to get more history and more thorough bedside assessment to rule in or rule out my diagnosis and differential diagnosis. Dr Albin: That's super helpful. So, looking for early falls, the prominence of autonomic dysfunction, and then that poor levodopa responsiveness while continuing to sort of keep a very broad differential diagnosis? Dr Xie: Correct. Dr Albin: One of the things that I just have to ask, because I so taken by this, is that you say in the article that some of these patients actually have preservation of smell. In medical school, we always learn that our Parkinson's disease patients kind of had that early loss of smell. Do you find that to be clinically relevant? Is that- does that anecdotally help? Dr Xie: This is a

    22 phút
4,6
/5
76 Xếp hạng

Giới Thiệu

Continuum Audio features conversations with the guest editors and authors of Continuum: Lifelong Learning in Neurology, the premier topic-based neurology clinical review and CME journal from the American Academy of Neurology. AAN members can earn CME for listening to interviews for review articles and completing the evaluation on the AAN’s Online Learning Center.

Có Thể Bạn Cũng Thích