We discuss Accurate KV Cache Quantization with Outlier Tokens Tracing, a deep dive into improving the efficiency of LLM inference. The authors enhance KV Cache quantization, a technique for reducing memory and compute costs during inference, by introducing a method to identify and exclude outlier tokens that hurt quantization accuracy, striking a better balance between efficiency and performance.
- Read the paper
- Access the slides
- Read the blog
- Join us for Arize Observe
Learn more about AI observability and evaluation, join the Arize AI Slack community or get the latest on LinkedIn and X.
Información
- Programa
- FrecuenciaDos veces al mes
- Publicado4 de junio de 2025, 2:00 p.m. UTC
- Duración25 min
- ClasificaciónApto