5 episodes

AI Spectrum podcasts cover a wide range of artificial intelligence and machine learning topics. Listen to experts within Siemens and their customers talk about the impact of AI, success stories, and the future of AI. Gain insight into real world applications so that you can potentially apply AI within your world.


See acast.com/privacy for privacy and opt-out information.

AI Spectrum Siemens Digital Industry Software

    • Technology
    • 5.0 • 1 Rating

AI Spectrum podcasts cover a wide range of artificial intelligence and machine learning topics. Listen to experts within Siemens and their customers talk about the impact of AI, success stories, and the future of AI. Gain insight into real world applications so that you can potentially apply AI within your world.


See acast.com/privacy for privacy and opt-out information.

    Understanding the Role of AI and How to Use Data

    Understanding the Role of AI and How to Use Data

    Artificial intelligence is becoming increasingly more common in the workplace. To really understand how it works and the benefits that it can bring about, talking to people with first-hand experience is key. To learn more about how AI technology is being used, we turn to our very own experts here at Siemens.  
    In today’s episode, I’m talking to Roberto D'Ippolito, Senior Technical Product Manager of the HEEDS team at Siemens Digital Industries Software based in Belgium. We’ll discuss the range of possibilities within AI, where all that data comes from, and how to create value from it. AI has the potential to offer big advantages over the competition, and machine learning puts all of the information into focus. 
    You’ll also learn where HEEDS fits into the simulation equation, the key benefits of using the technology, and the process of designing automated vehicles so that unpredictable situations are accounted for. We’ll wrap up by touching on a few misconceptions about AI, and where it might lead us in the future.  
    In this episode, you will learn:
    How we can utilize AI industrially and in general (1:48)The role of HEEDS (2:57)The key benefit of AI and machine learning technology (6:51)How the adaptive sampling strategy is being used (9:06)How machine learning meets the challenge of designing autonomous vehicles (11:02)The AV design process (14:13)Where all of the data is coming from (18:16)Challenging beliefs and misconceptions about AI (23:21)The future of AI in engineering (25:00)
    Connect with Roberto D'Ippolito:
    LinkedIn
    Connect with Thomas Dewey:
    LinkedIn

    See acast.com/privacy for privacy and opt-out information.

    • 26 min
    Addressing Design Flow Gaps and Creating Generic AI Solutions

    Addressing Design Flow Gaps and Creating Generic AI Solutions

    The gap between what the best AI applications can perform today versus the human brain is vast. Among many other differences, power efficiency and learning speed are two of the most challenging factors the AI & ML industry is dealing with when trying to design brain-like neural networks.
     
    Today, in the final episode of the series, Mike and Ellie discuss that gap and the challenges that hardware designers have in their design flow. They also touch on the clashing requirements of coming up with a generic AI application that can perform many tasks versus applications that perform one task really well.
     
    Tune in, to find out what the AI industry is doing to narrow the gap between the brain and artificial intelligence.
     
    In this episode, you will learn:
    The gaps between AI applications and the human brain. (00:45)The Holy Grail of AI: one-shot learning. (01:48)The energy consumption of the human brain versus deep neural networks. (02:50)The industry’s struggle of creating specific networks versus generic ones. (03:56)The resources required by one of the most complex neural networks. (06:08)The industry’s challenge of keeping up with the rapid changes in AI architectures. (06:57)
    Connect with Mike Fingeroff:
    LinkedIn
    Connect with Ellie Burns:
    LinkedIn
    Resources:
    Catapult High-Level SynthesisSiemens EDA
    See acast.com/privacy for privacy and opt-out information.

    • 8 min
    Identifying Hardware Design Challenges and AI at the Edge

    Identifying Hardware Design Challenges and AI at the Edge

    The field of artificial intelligence and machine learning - just like any other industry where innovation happens -  faces lots of challenges, and specialists are relentlessly looking for ways to overcome them.
    In this episode, Mike and Ellie tackle some of these challenges and discuss the different compute platforms, their limitations, and the surge of new platform development, as well as the many challenges that hardware designers face as they try to move AI to IoT edge devices.
    Tune in, and learn some of the challenges of implementing the latest cutting-edge neural network algorithms on today's compute platforms.
     
    In this episode, you will learn:
    The amount of energy neural networks use. (00:54)Why analog starts to be in the spotlight again. (04:30)How applications moving to the Edge impacts training and inferencing. (05:39)Data movement requires most of the energy consumption. (07:50)Connect with Mike Fingeroff:
    LinkedIn
    Connect with Ellie Burns:
    LinkedIn
    Resources:
    Catapult High-Level SynthesisSiemens EDA
    See acast.com/privacy for privacy and opt-out information.

    • 9 min
    Understanding Training vs Inferencing and AI in Industry

    Understanding Training vs Inferencing and AI in Industry

    In the world of AI, a key concept is how to train a neural network to perform a particular task efficiently and accurately, then a hardware solution is created that uses the results from that training - and this is called inferencing.
    The difference between these two concepts - training and inferencing - often creates confusion among people, and that's why, in today's episode, we are diving deep into explaining these two terms and how exactly they differ. 
    We are also painting a clear picture of the industries that use artificial intelligence and machine learning and what they're working on, so tune in, and find out more! 
     
    In this episode, you will learn:
    The difference between training versus inferencing a neural network. (00:46)Examples of frameworks that help with the training process of a neural network. (01:24)The stage AI & ML is at, currently, in terms of safety-critical applications. (04:42)The industries that are currently using AI & ML, and the types of applications they’re focusing on. (06:52)Connect with Mike Fingeroff:
    LinkedIn
    Connect with Ellie Burns:
    LinkedIn
    Resources:
    Catapult High-Level SynthesisSiemens EDA
    See acast.com/privacy for privacy and opt-out information.

    • 10 min
    Exploring AI and ML and Understanding Networks

    Exploring AI and ML and Understanding Networks

    Everywhere we look today, people are talking about artificial intelligence and machine learning, and you probably hear a lot of buzzwords around this topic. You might be curious on the resources needed to train a machine or what exactly the process entails.
    Well, simply put, think of it like this: the specialists in the AI & ML industry aim at mimicking the amazing human brain. That’s not really an easy task, but huge advancements have been made in the past decade.
    In today’s episode, Mike Fingeroff – Senior Member of Consulting Staff at Calypto Design Systems - and his guest, Ellie Burns – Director of Marketing at Siemens EDA - share the basics of artificial intelligence and machine learning and help us understand how neural networks work.
    Tune in, to learn more!
    In this episode, you will learn:
    Then and now – the changes through AI & ML history. (01:07)The catalyst for the boom of the AI industry. (05:32)What a deep neural network is & how it works. (06:34)The different types of neural networks. (08:35)Connect with Mike Fingeroff:
    LinkedIn
    Connect with Ellie Burns:
    LinkedIn
    Resources:
    Catapult High-Level SynthesisSiemens EDAAI in industry
    Read the transcript here:

    See acast.com/privacy for privacy and opt-out information.

    • 10 min

Customer Reviews

5.0 out of 5
1 Rating

1 Rating

Top Podcasts In Technology